Table of Contents

Safe Routes to School Plan .. 1

Table of Contents .. 3

Acknowledgements .. 5

Executive Summary, Significant Findings and Action Plan ... 7

 Significant Findings .. 8

 Action Plan Recommendations ... 10

Chapter 1: Introduction .. 40

 Purpose of the Plan .. 40

Chapter 2: About Safe Routes to School (SRTS) ... 42

 Overview ... 42

 History .. 42

 The Decline of Walking and Bicycling ... 43

 Health Risks ... 44

 The 5 Es of SRTS Planning .. 45

 A 6th E? - Equity ... 49

 National Physical Activity Trends In Children .. 51

 Safe Routes to School Planning Framework .. 52

 MnDOT Walk / Bicycle Zone Concept ... 53

 Status of State and Federal Support for Safe Routes to School ... 54

 Minnesota Schools Statewide Enrollment Options and the Impacts on SRTS 55

Chapter 3: Vision and Goals .. 56

Chapter 4: Community and School Profiles ... 58

 Community Profile and City Ordinances ... 58

 Henning School District and School Profiles ... 64

Chapter 5: Strengths – Barriers – Opportunities Analysis ... 69
<table>
<thead>
<tr>
<th>Chapter 6: Existing Conditions and Findings</th>
<th>...</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henning Walk / Bicycle Zones</td>
<td>..</td>
<td>72</td>
</tr>
<tr>
<td>Walk Audit</td>
<td>..</td>
<td>74</td>
</tr>
<tr>
<td>Observation Day Results</td>
<td>..</td>
<td>88</td>
</tr>
<tr>
<td>Traffic Volume Data</td>
<td>..</td>
<td>97</td>
</tr>
<tr>
<td>Crash Data</td>
<td>..</td>
<td>102</td>
</tr>
<tr>
<td>Notables and Concerns</td>
<td>..</td>
<td>107</td>
</tr>
</tbody>
</table>

| Chapter 7: Community SRTS Open House Event | .. | 108 |

Chapter 8: Standardized SRTS Survey Analysis	..	112
Parent Survey – Select Questions / Key Findings	..	113
Student Travel Tally – Select Questions / Key Findings	..	128
Discussion / Comparison	..	132

| Chapter 9: Recommendations | .. | 134 |

| Chapter 10: Conclusion | .. | 135 |

| Appendices | .. | 136 |

Appendix A: Parent Survey Results	..	136
Henning School – Elementary Grades	..	136
Henning School – Secondary and High School Grades	..	148

Appendix B: Student Travel Tally Results	..	160
Henning School – Elementary Grades	..	160
Henning School – Secondary and High School Grades	..	164

Appendix C: Data Collection Instruments	..	168
Parent Survey: English	..	168
Parent Survey: Spanish	..	170
Student Travel Tally	..	172

| Appendix D: Public Health Law Center, SRTS Policy Amendments | .. | 173 |

| Appendix E: Minnesota SRTS Model Policies Tip Sheet | .. | 180 |
ACKNOWLEDGEMENTS

West Central Initiative acknowledges the contributions and guidance provided by the Safe Routes to School team members listed below. In addition, we express gratitude for the technical support and resources provided by the Minnesota Department of Transportation.

Safe Routes to School Team Members

Peggy Bochenski – Paraprofessional, Henning School

Jane E.W. Butzer, P.E. – Program Coordinator, MnDOT- District 4

Gina Ellingson – City Clerk and Treasurer, City of Henning

Scott Grabe – Utilities Supervisor / Public Works, City of Henning

Michael R. Helle – Chief of Police, City of Henning

Jim Hermanson – Mayor, City of Henning

Patrick Hollister – Active Living Planner, PartnerSHIP 4 Health

Karen Nitzkorski – Worksite Wellness and School Coordinator, PartnerSHIP 4 Health

Jeremy Olson – Superintendent, Henning Independent School District #545

Bob Schlieman – Apex Engineering Group

Thomas Williams – Principal, Henning School
Minnesota Department of Transportation (MnDOT)

Lisa Austin – Bicycle and Pedestrian Planning Coordinator

Dave Cowan – Safe Routes to School Program Administrator

Mary Safgren – Planning Director, MnDOT District 4

West Central Initiative

Wayne Hurley – Planning Director

Greg Wagner – Business and Economic Development Director/ GIS Cartography

Donna Ellsworth – Secretary-Receptionist

Tammy Froemming – Administrative Assistant
The purpose of this Safe Routes to School (SRTS) plan is to guide school and city staff, local and state officials, parents, and educators in their efforts to make it easier, safer and more comfortable for students to walk and bicycle to and from school. It is the product of direct observation, expert analysis of the existing conditions around the school and in the community, input from members of the community, Minnesota Department of Transportation (MnDOT) assembled crash and traffic data, and results from standardized parent surveys and student travel tallies. A successful SRTS program will require community involvement if it is to have a meaningful impact on that of students attending school. However, as an added bonus, SRTS programs and infrastructure usually prove beneficial to the whole community.

SRTS plans and programming are just a few of the tools being used to combat physical inactivity and increased levels of obesity in the United States. Both are considered public health crises that are greatly impacting the health of Americans contributing to the rising costs of medical care today, and much more so in the future if current trends continue. Walking or biking to and from school is an easy way for children to get the regular physical activity they need to combat these problems and to build healthy habits into adulthood. Physically-active kids have fewer chronic health problems. They also have improved mood and concentration, a stronger self-image and more self-confidence which are all critical for succeeding in school and in life. SRTS programs can also instill safe travel habits in children at an early age, which they can take with them into adulthood.

In the spring of 2016, the City of Henning (City) with the Henning Independent School District #545 (School District) were awarded an SRTS Planning Grant from MnDOT to conduct an SRTS plan for the city and the Henning school. The SRTS planning process began in September of 2016 with a kick-off meeting and the formation of an SRTS planning team. The SRTS team envisions a community where it is safe and convenient for all its children to walk and bicycle to, from and between schools; where children can travel, explore and play in their community safely under their own power. Working together, the SRTS team, consisting of members of the City, School District, MnDOT and PartnerSHIP 4 Health were uniquely-suited to identify and implement the suggested recommendations in this plan for the city and schools. This plan addresses the five “E”s of education, encouragement, enforcement, engineering and evaluation, which is the standard strategy in SRTS planning. Also addressed are possible issues of equity. Equity needs to be considered as some communities and/or members of the community may have been historically underserved, have greater needs and/or have been more negatively affected by transportation planning decisions of the past. After the SRTS planning document is approved by both the City and School District, the city and/or school may seek out funding and resources to implement the identified recommendations.
SIGNIFICANT FINDINGS

OBSERVATIONS AND WALKING AUDIT

- Henning, while small, has a dense, contiguous suburban form with an active downtown and industrial centers well-positioned at the edges of the city. Many years ago, the placement of the Henning School at the point where several streets meet was very deliberate. Its location was clearly intended to be the focus of the community as a source of civic pride but also to maximize efficiency for the students walking and biking to school. It is also contiguous with, if not surrounded by, residential neighborhoods. The Walk/Bike Analysis found that almost all residences within urbanized Henning are within a half mile of the Henning School. The furthest residence measured just 0.6 street-miles from the school.

- The principal of the Henning School roughly estimated that 25 percent of the students live within the city of Henning. Due to the city’s small size, all students residing there are prime candidates to walk and/or bike to and from school.

- Circulation in front of the school on School Avenue was less than ideal, particularly in the afternoon. Buses need to park at a 45-degree angle to the curb so they all fit in front of the elementary school section. Not only do the buses block much of School Avenue forcing it to be closed to other traffic during dismissal but it has forced the city to make School Avenue exceptionally wide (54 feet) which is not conducive to pedestrian safety. Finding an alternative bus dismissal procedure in the afternoon is the recommended top priority of this plan.

- The large gravel parking lot across from the Henning Elementary entrance is clearly underutilized. Paving with markings would maximize the number of spaces to an estimated 102. This could better organize traffic flow for those parked in the lot and aid parents who pick up students. Reorganizing and possibly paving this parking lot is a secondary priority of this plan.

- Illegal and less than ideal parking observed on School Avenue across from the high school entrance is impinging upon safety. Parking should be relocated to the underutilized lot mentioned above.

- The City of Henning has been maintaining, replacing and installing new sidewalks. New concrete was seen all over town, including on Poulson Avenue, which never before had sidewalks. However, there were no sidewalks on School and Hipple Avenues just east of the school. The City hopes SRTS infrastructure grants could help fix this and other key missing sections of sidewalk.
• The City has well-written and rather specific sidewalk ordinances. All reasonable efforts should be made to ensure that these ordinances are rationally and well-enforced.

• Feedback from the community outreach session focused primarily on the high volume of truck traffic and speeding on Douglas Avenue and when entering town on Inman Street. Other concerns included the drop-off and pick-up procedures and locations of the buses in the afternoon. Finally, the lack of sidewalks and crosswalks on School and Hipple Avenues was mentioned, as well as sidewalk / crosswalk conditions at the corner of Marshall and Douglas Avenues and to Milne.

TRAFFIC VOLUME AND CRASH DATA ANALYSIS

• Traffic volumes are relatively light in Henning. However, heavy commercial truck traffic makes up nearly 10 percent of the traffic on the roadways it’s measured. Douglas Avenue – State Highway 108 through downtown has the highest traffic volume with an Annual Average Daily Traffic (AADT) on 1750. Next to the school, Marshall Avenue has an AADT of 840 which is still considered light.

• There were no crashes involving bicyclists or pedestrians in and around urbanized Henning. There were, however, three fatal crashes that killed four people. All of these happened outside urbanized Henning on rural roads and highways.

• There is a notable crash spike at the 15:00 hour (3:00 to 4:00 p.m.) in Henning, twice as much as any other hour. This 3:00 to 4:00 pm peak has been seen in other communities. This time also corresponds to when students are dismissed from school. More research is needed to see if walking and biking students are at extra risk and/or if high school students make up a disproportionate number of crashes during this hour.

PARENT SURVEY AND STUDENT TRAVEL TALLY RESULTS

• Parent survey returns were divided between students in elementary grades and those in secondary and high school grades. Unfortunately, each of the two groups received just 16 returns each. These small return numbers are below the 30 recommended to provide statistically-significant conclusions with a degree of confidence. Student travel tally returns for the secondary / high school grades were also small with only 94 trips recorded compared the 655 recorded in three days from the elementary grades.

• The student travel tally results from the elementary grade students had a larger number of recorded data points compared to both parent surveys and is likely more accurate. The combined walking and biking mode share for elementary grades at the Henning school is below the national
average at 6 percent morning, 17 percent afternoon. The national average is 15.2 percent in the morning and 18.4 percent in the afternoon. The secondary and high school grades split the national average with a combined mode share of 24 percent morning and 9 percent afternoon. However, the reliability of these secondary / high school grade results is questionable due to the poor compliance to the tally survey rules and small number of 94 trips recorded.

- When examining both sets of parent survey data and considering only those students who live within the Walk / Bike Zones, we see a more respectable 43 percent of elementary students and 75 percent of secondary / high school students walking and biking in the morning and afternoon.

ACTION PLAN RECOMMENDATIONS

EDUCATION

Goal: Establish at least two educational programs a year within the community to teach and foster good bicycle and pedestrian safety habits.

1. **Continue with the annual bicycle rodeo event to teach bicycle skills and safety to students.**

 Bicycle Rodeos are bicycle safety training events typically held after school or on weekends and open to the greater community. They are usually run for two to three hours and teach bicycle safety lessons and on-bike skills, usually in a station format (e.g., bicycle safety check, helmet fitting, instruction about the rules of the road, on-bike obstacle course, on-bike skills drills, etc.) While geared towards children, many of the lessons can be appropriate for adults as well. Bicycle rodeos can be held as part of a larger event or on their own, and either during the school day or outside of school. Adult volunteers can administer rodeos, or they may be offered through the local police department. Key partners in implementing a bicycle rodeo event may (should) include teachers, League of American Bicyclists Cycling instructors, and PartnerSHIP 4 Health

2. **Educate students about proper walking and bicycling etiquette through in-school and after-school bicycle and pedestrian safety education.**

 a. **Investigate using the afternoon activities club at the Henning School as a platform for safe walking and bicycle education.**

 b. **Utilize the Walk! Bike! Fun! curriculum to help students understand the rules of the road.**

 c. **Identify the need for a bicycle fleet.**
Observation results indicate that a portion of students did not exhibit proper walking techniques. Students were not utilizing crosswalks and some were seen not looking for traffic when they were crossing the street. Some of the bicyclists also displayed improper techniques by riding through stop signs and not looking before entering streets and intersection.

The Walk! Bike! Fun! curriculum is an in-classroom and real-world, on foot and on bike, educational resource and can help address improper walking and biking behaviors like that observed by during the SRTS planning process. Taught by specially-trained school teachers, government staff and/or volunteers, this curriculum is intended for children ages five through thirteen. It teaches life-long skills related to traffic rules like identifying potential hazards and general biking and walking skills that enable students to walk and bike safely and comfortably around their communities. The curriculum addresses a variety of walking and bicycling topics and is endorsed by MnDOT. Finally, in order to engage students in the Walk! Bike! Fun! curriculum, the Henning School District should identify the need for a bicycle fleet, or identify a nearby fleet they may be able to borrow.

![Figure 1: The Fergus Falls bike fleet is kept inside this towable trailer.](image)
3. Develop a school district safety campaign to build awareness of students walking and bicycling to and from school, and to encourage safe driving behavior among parents, high school students and passersby.

While observations by the SRTS team seem to indicate rather good driver behavior around the schools, comments from the public and in the parent survey indicate concerns about driver behavior. Their concerns are mostly on the major roadways through Henning such as Douglas Avenue (State Highway 108) and Inman Street (County 67), particularly where they enter town but also on Marshall Avenue and other streets throughout the city. A school safety campaign should be developed that builds awareness around students walking and bicycling to and from school. An effective safety campaign might utilize multiple forms of media to get the attention of parents, students and passersby. Primary outcomes are improved walking, bicycling and driver safety behaviors (particularly near the school), and youth empowerment.
4. Design a parent workshop to provide tools, resources and support needed to encourage parents and other community members to begin walking and bicycling for transportation.

A parent workshop for those living in and around Henning can provide the tools, resources and support needed for parents to overcome some of the common barriers they noted to not allow their children to walk or bicycle to and from school. While distance was the most frequently cited barrier in the parent survey, traffic and weather were also commonly noted. While traffic is a real threat to student safety for those walking to school, it is something that can be mitigated to some degree through education and parent involvement. Topics such as how to be a responsible driver, starting a walking school bus, and launching a safety campaign can help mitigate the amount and speed of traffic near the school route.

5. If there is ever a desire to construct a blacktop playground at the Henning School, consider building and painting it with “play” road markings in a manner sometimes referred to as a “Safety Town” or “Traffic Garden.”

Traffic gardens are common throughout Europe and are often painted onto a playground surface of elementary schools. They include “play” traffic lanes, intersections with stop signs, painted sidewalks, marked crosswalks, solid and dashed yellow centerlines, turn lanes and even a traffic circle, all with the purpose of teaching children proper traffic and safety behaviors associated with walking and biking, as well as driving. While often not much more than paint on asphalt, they can be elaborate and complex with completely functioning traffic lights, railroad gates, etc. It is not required that this be located on school grounds and could be built in a nearby park.
Figure 3: Images from a German elementary school “Traffic Garden”. Besides its role teaching children traffic basics, this area otherwise serves as a regular macadam school yard. Note the crosswalk on the far side of the right image and the traffic circle to the far right.

For more Education ideas, see Minnesota SRTS Model Policies Tip Sheet (Appendix E) and the Minnesota SRTS Resource Center – Education:
http://www.dot.state.mn.us/mnsaferoutes/resources/education.html

ENCOURAGEMENT

Goal: Explore strategies to promote walking and bicycling through the identification of safe routes, organizing events, rewarding participation, and educating adults.

1. A review of relevant Henning School District policies was performed as part of this SRTS plan. The district should follow through on its policy for providing bicycle and pedestrian safety education in grades K through 5. It should also investigate updating its policy language with the goal of making it consistent with the objectives and best practices of SRTS. The amendments for the Wellness policy provide detailed SRTS guidance specific to Minnesota and was produced by the Public Health Law Center at the William Mitchell College of Law. It can be found in Appendix D. It is suggested that the School District adopt these policies in whole or in part. An additional policy resource specific to Minnesota is the Minnesota SRTS Model Policies Tip Sheet which can be found in Appendix E. Furthermore, the SRTS National Partnership, in cooperation with ChangeLab Solutions (a multi-disciplinary, multi-government agency policy partnership), has developed an on-
line SRTS District Policy Workbook. This resource is a comprehensive SRTS policy guide covering everything from general policies supporting SRTS to more advanced policies like “No Idling Policies” and “School Siting Policies.” This resource is best accessed on-line and can be found at: http://www.changelabsolutions.org/safe-routes/welcome. Finally, look for possible improved policies from the MnDOT SRTS Office and/or the Minnesota Department of Education in the near future.

Within Henning School District’s Transportation and Wellness Policies, only one direct reference to walking or biking to and from school was found. The 709 policy states that students in grades K-5 will be provided bicycling and pedestrian safety education.

The “707 Transportation of Public School Students” policy articulates the legal requirements of the school district to provide transportation to students within district boundaries. It does not specifically mention details related to walking and biking but it does mention that “transportation by the school district is a privilege and not a right.” Similar language is common in nearly all other 707 policies. The “709 Student Transportation Safety Policy” is primarily a 20-page document dedicated to the operational details of busing students. It states that “The school district may provide student safety education for bicycling and pedestrian safety for students in grades K through 5.” This statement is found occasionally in other district 707 or 709 transportation policies and ties in well with the goals, aims and ages targeted in the Minnesota Walk! Bike! Fun! curriculum. It also reinforces and mirrors the same education directive found in the Wellness Policy. The policy states that “Parents/Guardians are responsible to support safe riding and walking practices, and recognize that students are responsible for their actions.” However, it is not clear what the “riding practices” are and is assumed to mean bus riding practices, not bicycle. No where else in the two policies are there any direct mention regarding walking or bicycling.

Overall, the Wellness Policy is very supportive of the same goals generally pursued by SRTS and characterized by the following statements: “Students need opportunities for physical activity and to fully embrace regular physical activity as a personal behavior. Towards that end, physical education and health education will reinforce the knowledge and self-management skills needed to maintain a healthy lifestyle and reduce sedentary activities.” It also states that “All students in grades K-12 will have opportunities, support, and encouragement to be physically-active on a regular basis.” And while the policy “will support parent’s efforts to provide to provide a healthy diet and physical activity for their children,” there is no such direct statement as is often found in other Wellness policies that “Schools shall encourage bicycling and walking to and from school.”
Overall, the language in the three policies appears to be relatively standard as written by the Minnesota School Boards Association. However, since most of this standard policy language predates the SRTS movement, there is room for a great deal of improvement with regard to walking, biking and other SRTS initiatives.

2. **Develop informational messages to be included in the monthly school newsletter or email blast, encouraging students to walk or bike to school and highlighting associated health benefits.**

 Monthly informational messages can raise awareness about the positive health and academic benefits associated with increased physical activity, such as walking and bicycling. To get information to parents, a short message could be included in the monthly school newsletter.

3. **Explore the development of a remote school bus drop site, possibly in front at the corner of Douglas Avenue and 2nd Street. Students would have the option to walk the remaining distance (a three and a half minute walk) to either school or take the bus the rest of the distance.**

 In a rural school district where students can live 20, 30 or more miles away from the school, it is not practical to have these students walk or bike to school. Others may live close by but are confronted with traffic barriers like highways and/or railroad tracks. These students can still get the exercise benefits of walking to school if the school bus system gives them the option of walking a few blocks to school from a safe remote drop-off site. This would also allow these students to participate in walking and biking to school competitions (see below). A teacher or parent volunteer could assist the elementary school children who decide to participate.

4. **If not already policy, where safe to do so, explore the consolidation of bus stops so bused students are required to walk to a bus stop. The outlying communities of Vining and Almora are small enough that only one bus stop should be needed.**

 Front door pick-ups and drop-offs are common in many school districts but they minimize the amount of walking bused students can get on their trip to and from school. Requiring students to walk to and from a bus stop is one strategy for bused students to get more physical activity before and after school. It also can speed up travel times so students spend less time on the bus and more time either sleeping in the morning, studying and/or being physically active. Extreme weather conditions, particularly common in the winter months in this part of Minnesota, need to be considered, possibly on a day-to-day basis.
5. **Explore / develop a competition or challenge to reward students by tracking the number of times they walk or bike to school, including those that take the bus and opt to be dropped off remotely or participate in some sort of physical fitness activity like walking on school grounds, etc.**

Competitions or challenges provide students with immediate, positive reinforcement. Beyond a walk and bike to /from school challenge, possible competitions or challenges are endless and could target individuals, classrooms or the entire school.

6. **Explore / continue participation in the International Walk and Bike to School Day and the new Minnesota SRTS Winter Walk to School Day to encourage students and their families to try walking or biking to school.**

International Walk and Bike to School Day attracts millions of participants all over the world. The intent is to encourage students and their families to try walking or bicycling to school for one day. In some districts with high busing numbers, events on this day might include a walk around school grounds and throughout the town for all students, or a remote bus drop-off which would allow all students to walk to school from that location. Depending on the response rate, these events could be extended into the future and turn into ongoing designated walking and bicycling days. Winter Walk to School day started in Canada in 2007. February 2017 marked the first year that the Minnesota SRTS program officially participated. Key partners may include law enforcement officials, high school students, teachers, parent advocates and PartnerSHIP 4 Health. A desired result is that youth become empowered and more connected to the health benefits of walking and biking and their environment as well.
7. Consider installing a bicycle repair station near the high school entrance where the bicycle racks are already located in accordance to the Association of Pedestrian and Bicycle Professional (APBP) guidelines.

Outdoor bicycle repair stations (Figure 4) are a great way to encourage bicycling. They provide a way to make sure that bicycles are in good working order before students leave school for the day. This enables the student to make minor repairs that may otherwise leave them stranded, all while teaching students basic mechanics and self-reliance. A typical station is equipped with a repair stand that holds the bike from the saddle, a heavy-duty, all-weather bicycle pump and basic tools attached to the stand with theft resistant cables that allow a person to make most basic repairs.

They can also be of use to members of the general public when not needed by students and/or faculty.

Figure 4: A bicycle repair station with a heavy-duty, all-weather pump, installed in the summer of 2015 at the Fergus Falls Public Library.
Figure 5: Henning Proposed Walking School Bus Routes. Basemap Aerial Imagery via Google Maps.
8. Investigate the feasibility of walking school buses for students from various neighborhoods within the Henning city limits.

A walking school bus is a group of students walking to and from school with chaperones, usually parent and/or other adult volunteers. This can be a fun, secure, healthy and easy opportunity for students to be physically active. A walking school bus can provide front door pick-up and drop-off of students along the way, which can allay most parents’ fears. It can be done daily or just on certain days of the week and/or depending on weather conditions. Explore the demand for a walking school bus and if parents or other citizen volunteers are interested in taking turns walking students as “drivers.” Outreach to parents could be done via the parent newsletter. The hardest part to operating a walking school bus is finding enough dedicated volunteers to act as “drivers.” But active elderly members of the community have been recruited to perform this task in other towns and cities with very successful results. Routes along the Marshall Avenue, 2nd Street, and Hipple / School Avenue corridors are most likely to be feasible and provide the most utility.

For more Encouragement ideas, see Minnesota SRTS Model Policies Tip Sheet (Appendix E) and the Minnesota SRTS Resource Center – Encouragement:

http://www.dot.state.mn.us/mnsaferoutes/resources/encouragement.html
ENFORCEMENT

Goal: Address traffic and safety concerns by identifying and implementing enforcement measures within the school walk and bike zone.

1. Maintain the adult crossing guards at the current locations and investigate additional guards at the following locations:
 - Marshall Avenue at School Avenue
 - 2nd Street at Douglas Avenue
 - Hipple and School Avenues at Inman Street

 Note that some of the proposed engineering improvements around the school may negate the need for one of the two crossing guards traditionally stationed at the school.

 The presence of a trained adult crossing guard can be of invaluable importance to student safety at locations with busy and/or fast moving traffic like near the elementary front entrance. They often also act as a second pair of much more experienced eyes and can see hazards that young children may not be aware. Also, crossing guards can help with the traffic flow of parents picking up and dropping off students and enforce the no parking restrictions in front of the school which was a noted violation by the SRTS team and during Observation Day. Adult crossing guards have the added benefit of acting as a source of encouragement to students and reassurance to parents. This person could be a school employee, a new hire, or an adult volunteer.

2. Increase the prevalence of traffic law enforcement in strategic locations during student morning arrival and afternoon dismissal.

 The SRTS team and one or two parents from the parent survey noted speeding traffic as a barrier for their children to walk and/or bike to school. Increasing the prevalence of law enforcement officers near the school may help to reduce vehicle speeds, improve compliance with speed limits around the school and increase the likelihood of vehicles yielding to pedestrians. This is a short-term, easy-to-implement recommendation that can be low cost.
3. **Remind residents (and enforce by citation if necessary) of Minnesota State parking laws per Statute 169.34 PROHIBITIONS; STOPPING, PARKING.**

Cars parked in driveways across sidewalks were not regularly observed within Henning. However, while this causes no more than a minor nuisance for abled-bodied persons walking past during warm weather months, cars parked across the sidewalk can become a significant obstacle during times of heavy snowfall and will always block the safe passing of pedestrians with disabilities. Parked cars blocking sidewalks are very likely a violation of the Americans with Disabilities Act. And while not observed as a systemic problem in Henning, it is also illegal per Statute 169.34 to park: within an intersection, on a crosswalk, within 20 feet of a crosswalk at an intersection, within 30 feet upon the approach to any flashing beacon, stop sign, or traffic-control signal located at the side of a roadway, etc., (please see complete statute for all parking restrictions).

4. **If not in practice already, rescind parking privileges to high school students observed driving in an irresponsible manner while arriving and leaving the school grounds. Investigate the possibility of extending such restrictions to any student who receives two or more traffic citations and is found guilty of those moving violations.**

Being able to drive a private automobile to school and park it on school property is a privilege. Irresponsible driving behaviors by students near the school and around Henning should not be tolerated as the consequences can easily be fatal. Several parents of younger students noted the driving behaviors of high school students as a deterrent to allowing their children to walk and/or bike to and from school.

5. **Investigate restricting heavy truck through-traffic to state and county controlled highways, city streets in commercial and industrial zones, and to only local deliveries on residential city streets.**

Many of Henning's residential city streets, including some near the school are fairly wide but are really only appropriate for automobile traffic and the occasional truck delivery. Highways that are under state and county jurisdictions, along with roads in commercial and industrial zones, is where such traffic is expected and are typically wider and engineered to accommodate it. Heavy truck traffic should be restricted from using residential city streets in Henning unless making a local delivery.
6. Identify the most effective form of automated speed feedback sign and investigate the possible installation (permanent or temporary) at strategic locations within Henning (See Figure 6). Locations might include:

- Douglas Avenue – State Highway 108 just northwest of Holden Avenue facing inbound traffic.
- Douglas Avenue – State Highway 108 just southeast of Balmoral Avenue facing inbound traffic.
- Inman Street – County 67 just south of Willow Creek Drive facing inbound traffic.
- Inman Street – County 67 just south of Marshall Avenue facing inbound traffic (just off map).
- Marshall Avenue just north of School Avenue facing southbound traffic.
- Marshall Avenue just south of Hipple Avenue facing northbound traffic.

Complaints of speeding came from the SRTS team members and the greater community and are a frequently-noted problem in many Minnesota communities and Henning is no different. Speeding was also directly observed during the SRTS planning process. Speed feedback signs are a fairly uncontroversial and effective means of slowing traffic. They have been used in communities in Greater Minnesota and are very common in rural North and South Dakota towns. Using radar to detect a vehicle’s speed, the signs will display the speed of the oncoming vehicle to show the driver if they are driving above the posted limit. If they drive more than five mph over the limit, the sign can be programmed to flash the detected speed, sometimes with a flashing strobe light to catch the driver’s attention. It is recommended that Henning, with help of county and MnDOT officials, identify the most effective form of automated speed feedback and exact locations for deployment.

7. Investigate relocating the transition from 45 mph to 30 mph on Douglas Avenue – State Highway 108 to locations slightly further outside of city limits on both approaches into town. On the approach into town from the northwest, transition to 30 mph just past the intersection with Balmoral Avenue. On the approach from the southeast, transition to 30 mph just prior to the intersection with Holden Avenue. Investigate converting the remainder of the residential streets in Henning to 20 mph as is already the case on Balmoral, Fergus and Poulson Avenues (See Figure 6).

For more Encouragement ideas, see Minnesota SRTS Model Policies Tip Sheet (Appendix E) and the Minnesota SRTS Resource Center – Enforcement:
http://www.dot.state.mn.us/mnsaferoutes/resources/enforcement.html
Figure 6: Henning Proposed Speed Limits and Speed Feedback Sign Locations. Basemap Aerial Imagery via Google Maps.
ENGINEERING

Goal: Improve the existing infrastructure within the community to ensure active transportation is encouraged and made safe.

Note – All of the following recommended proposals are rough but well thought-out ideas from a professional active transportation planner. They will need further vetting and refinement, including that of a licensed engineer, to see if they are feasible. The recommendations below are listed in a general order of priority. For a visual summary of the suggested Engineering proposals, please see Figures 8 through 14.

1. In an effort to make the school grounds and immediate neighborhood safer and more conducive to students walking and biking to school, investigate the following improvements in roughly the following order. All are detailed in Figures 8 and 9.
 • Pave the gravel parking lot across from the elementary school entrance. Utilize the alley on the east side of the lot to access and maximize the number of spaces up to a possible 102. This would free up room either through the center of the parking lot (Detail A, Figure 8) or on the west side of the lot (Detail B, Figure 9) for a landscaped pathway. Have faculty and staff park in the front of this lot and require that all high school students park in the rear portion.
 • Install a six-foot wide landscaped walkway through or next to the parking lot to accommodate students walking to and from school as well as to and from establishments on Douglas Avenue for lunch. This will also add an aesthetic element to the asphalt lot.
 • Eliminate awkward and potentially dangerous parking areas adjacent to School Avenue near the water tower. Spaces in the improved parking lot will make up for the 10 or so spaces lost.
 • In the afternoon, relocate school buses headed to destinations north and west of Henning in the alley. The right turn from the alley onto Hipple Avenue is only 40 degrees and should be easy for the buses to navigate who are headed north on Marshall Avenue and ultimately destinations north and west within the district. All other buses headed to destinations east and south with the district can line up parallel to the curb in front of the school on School Avenue.
• With the need to park the buses at an angle to the curb eliminated, School Avenue can be reduced in width from 54 feet to 40 feet or less. The narrow width of the roadway would have a traffic calming effect and reduce the time student pedestrians need to spend in the street as they are crossing. It would also allow for more green space in front of the school building. A wider sidewalk of 8 feet could be installed next to the curb which is a more appropriate sidewalk width for a large number of students boarding and alighting school buses.

• Reduce school speed zone on School Avenue and a portion of 2nd Street to 10 mph.

• Install new crosswalks and sidewalks being mindful of the proposed widths.

• Paint and properly maintain crosswalks at all intersections adjacent to the school.

\[\text{Figure 7: Key for the following two maps.}\]
Figure 8: Henning School Suggested SRTS Improvements with School Bus Circulation Detail – A.
Figure 9: Henning School Suggested SRTS Improvements with School Bus Circulation Detail

Aerial Imagery via Google Maps.
2. Installation of sidewalks, crosswalks and curb ramps throughout Henning as per the recommendations seen in Figures 11 and 12. Ensure that all improvements meet the latest Americans with Disabilities Act Accessibility Guidelines (ADAAG) and the Public Right-of-Way Accessibility Guidelines (PROWAG). All sidewalks, unless otherwise indicated, should be a minimum of 5 feet in width. This replicates the width of most new residential sidewalks in Henning and allows for two people to comfortably walk side-by-side. Note the two proposed strategies, “Sidewalks and Shared Streets” (Figure 11) and “Sidewalk Intensive” (Figure 12). Sidewalks and Shared Streets is the author’s recommended strategy. (See more in Engineering Item 6.)

3. Priority should be given to SRTS Engineering improvements in the following order:
 - All suggested improvements in Suggestion 1.
 - To sidewalk and other proposed improvements that are both within one quarter mile of the school and are along a priority corridor. This includes proposed improvements on School and Hipple Avenues and on Front Street.
 - To proposed improvements on the priority corridors greater than one quarter but within one half mile of the school, as well as those within a quarter mile but not on a priority corridor.
 - All other proposed improvements should be made as opportunity and funding allow.

Priority corridors are illustrated in Figure 13.

4. In conjunction with sidewalk improvements, investigate the installation of pedestrian-activated crosswalk beacons like a Rectangular Rapid Flashing Beacon (RRFB) in conjunction with high visibility, Continental style crosswalks to increase driver yielding rates at the following intersections:
 - Marshall Avenue crosswalk just south of Lloyd Avenue.
 - Inman Street – County 67 at Hipple Avenue.
 - Douglas Avenue – State Highway 108 at Hipple Avenue.
 - Douglas Avenue – State Highway 108 at midblock (at alley) between 2nd and Front Streets.

(See Figures 11 and 12)
5. To best facilitate the strong desire line of students walking to food establishments on Douglas Avenue, investigate the conversion of the alley between 2nd and Front Streets into an aesthetically-attractive “shared use” space where the pedestrian is the primary intended user and automobiles second but still well-accommodated. (See Figures 8, 9, 11 and 12.)

6. For all streets that are recommended for a “shared use” strategy, it is imperative that these streets remain, or are made narrow, and/or with traffic calming measures to ensure that motor traffic speeds are kept low. This helps make these streets more welcoming to pedestrian use, as well as for street play for local children.

7. Investigate closing these intersections to improve pedestrian safety:
 - Milne Avenue at Douglas Avenue – State Highway 108 (a slightly awkward intersection.)
 - 4th Street at Douglas Avenue – State Highway 108 (a complex 5-way intersection.)
 - Hipple Avenue at Douglas Avenue – State Highway 108 (a traffic shortcut.)

In all cases, the closed leg of the intersection can be easily circumvented by local traffic and will require traffic to slow down. Closures can be tested with inexpensive materials like construction cones and barricades for a trial period but if proven popular should eventually be made permanent using curbing, sidewalks and landscaping. Engineering measures could be taken to allow for the easy access of emergency equipment if deemed necessary. (see Figures 11 and 12.)

8. Maintain all existing painting crosswalks (and proposed new ones) at all other pedestrian crossings throughout Henning.

9. Investigate realigning Front Street between Holden and Balmoral Avenues to mitigate possible fast turns around the corner and also facilitate a sidewalk on the west side of Front Street. (See Figures 11 and 12.)
10. Coordinate with MnDOT, Canadian Pacific Railroad and Otter Tail County, regarding the possible reconstruction of the 2nd Street and Inman Street-County 67 at-grade railroad crossings to assure that proposed sidewalk crossings meet the latest ADA PROWAG standards. (See Figures 10-12.)

11. Coordinate and investigate with Canadian Pacific Railroad and MnDOT regarding the installation of fencing on the south side of the railroad from Marshall Avenue to Inman Street-County 67. More fencing could also be installed on the north side from Inman Street to a point approximately 1000 feet to the southeast at a point past the terminus of Ellenson Drive. This can help to prevent pedestrian trespass on to the railroad right-of-way and focus pedestrians to legal crossing locations with proper pedestrian accommodations.

12. Investigate installing traffic calming measures such as bump-outs, traffic islands, etc. at intersections on the following street sections:
 - Marshall Avenue from Douglas Avenue to Inman Street.
 - Inman Street from Marshall to Balmoral Avenues.

Bump-outs have a traffic calming effect, reduce the distance that pedestrians need to spend in the street with automobiles, can prevent illegal parking of vehicles too close to a crosswalk and/or stop sign (which can block a driver’s view of these traffic control devices.) They can aid in making pedestrians and stop signs more visible to drivers by placing them in a more conspicuous, easier to be seen location without being in the roadway. Sidewalk bump-outs can be engineered to be...
mountable when large heavy trucks need to turn at bump-out intersections. Temporary, low-cost installation can be employed on a trial basis to test these traffic calming measures before more permanent and expensive installations are employed. Use best local judgment when prioritizing installations. Coordinate sidewalk installations with other road / infrastructure projects, to take advantage of potential cost savings. Use best local judgment when prioritizing installations.

13. Investigate installing the SRTS optimized bikeway network depicted in Figure 14. Prioritize the bikeway routes in the priority corridors identified in Figure 13. Most recommendations are low-cost consisting mostly of painted lanes and MUTCD compliant signs. It is recommended that bike routes be augmented with MUTCD compliant bicycle shared lane markings also known as “sharrows.” Suggested lane widths for proposed bike lane improvements have already taken into consideration strategies to minimize loss of on-street parking. It is recommended that bikeway network improvements be phased in gradually, possibly included as part of existing scheduled roadway improvement projects. This allows local residents time to become accustomed to the changes with minimal extra costs and before a large expense is undertaken. The bike lane suggested for Douglas Avenue is more for traffic calming purposes and the general utility of the residents of the city of Henning. It is not intended to serve a direct SRTS function.

14. Work with MnDOT and the State Legislature on the posting of 20-mph speed limits on all city streets that are not part of the state or county networks (See Enforcement Item 7 and Figure 6).

It is suggested that all streets within Henning, that are not a part of the state and county networks, be posted at 20 mph. Lowering traffic speeds is a solidly-proven traffic safety countermeasure and lowering the speed limits can be done very inexpensively. Nearly all of the roads that fall under this recommendation are residential in nature and have limited potential to serve regular through-traffic.

15. Where practicable, set sidewalks as far back as possible from the roadway curb to create a buffer between pedestrians and motor vehicle traffic.

Such buffers can reduce traffic stress on pedestrians and make walking safer and more enjoyable, while providing a place for street-trees to grow. These buffers are even more important on busier roadways with higher traffic volumes, faster vehicle speeds, and/or significant heavy truck traffic.
16. Investigate composing a city ordinance requiring that all new residential and commercial development be required to install sidewalks where the property in question faces the street.

17. Plant trees within the public ROW, preferably between the sidewalk and the curb if there is adequate space in the boulevard (≥4 feet for small tree species, ≥6 feet for medium to large trees). Be mindful to keep sightlines open and free of obstructions at intersections and driveways.

Not only do trees provide a physical barrier between an errant car and a pedestrian, but a colonnade of large overarching trees can provide a traffic calming effect by closing in the perceived width of the roadway and increasing the sense of speed. Trees also provide a break from the persistent prairie winds around Henning that can make winter temperatures that much more formidable. During hot, summer months, they provide a shaded oasis making walking and biking more attractive to students and residents alike.

18. Encourage infill residential development and/or development within close proximity to the school to enable the possibility of more students to walk and/or bike to and from school and to minimize busing costs.

19. On a case-by-case basis and, if and when the need arises, encourage / require developers to construct multi-use shortcut pathways to make it quicker, easier and shorter for people to walk and bike to school as well as other destinations in Henning.

20. While not having direct SRTS application, investigate installing multi-use path and sidewalk shortcuts depicted in Figures 11, 12 and 14 and listed below:

- From the southern most point on the Willow Creek Trail to 2nd Street.
- Through the park at the southeast corner of Marshall and Douglas Avenues.
- Westward through the park and past the memorial at the northwest corner of Milne and Douglas Avenues.

For more Engineering ideas, see Minnesota SRTS Model Policies Tip Sheet (Appendix E) and the Minnesota SRTS Resource Center – Engineering:

http://www.dot.state.mn.us/mnsaferoutes/resources/engineering.html
Figure 11: Hennings Proposed STS Improvements: Sidewalks & Shared Streets. Basemap Aerial Imagery via Google Maps.
Figure 12: Henning Proposed SRTS Improvements: Sidewalks Intensive. Basemap Aerial Imagery via Google Maps.
Figure 13: Henning Suggested SRTS Improvement Priority Corridors. Basemap Aerial Imagery via Google Maps.
Figure 14: Henning Proposed Bikeway Network with Estimate Cycling Times. Basemap Aerial Imagery via Google Maps.
EVALUATION

Goal: Evaluate the effectiveness of programming by tracking baseline data and, in addition, actively work on improvement based on results.

1. Administer the student travel tallies at least once per year to track the number of students walking and bicycling in comparison to the 2017 baseline results.

In order to track the results of implemented programming, it is recommended that the Henning Independent School District #545 administer the student travel tallies at least annually. The results will indicate the number of students walking and bicycling, which in turn will identify the effectiveness of programs. If possible, try to conduct the student travel tallies more than once per year so it is possible to capture travel data during periods of inclement weather, particularly rain and snow, to see how that affects student travel mode choice. This data will also be useful when applying for non-infrastructure or infrastructure funding.

2. Administer a parent survey questionnaire once every two to three years to track and analyze school travel behaviors and parents' perceptions.

The parent survey tool tracks and analyzes student travel behaviors and parents' perceptions of walking and bicycling. This survey should be conducted no more than biannually as attitudes are not likely to change that quickly. If done too frequently, parents may not be as inclined to fill out the survey. Results can then be compared to the baseline analysis completed in the fall of 2016.

3. Explore establishing baseline health data (possibly already gathered) to evaluate possible health improvements over time related to SRTS improvements.

In order to track student health improvements over time, it is suggested that the Henning Independent School District #545 collect baseline health data. It is likely that the school district is already collecting this data. As SRTS programs and improvements are implemented, the health of students can be tracked on a continual basis. PartnerSHIP 4 Health may be able to help the school district organize this.

For more Evaluation ideas, see Minnesota SRTS Model Policies Tip Sheet (Appendix E) and the Minnesota SRTS Resource Center – Evaluation:
http://www.dot.state.mn.us/mnsaferoutes/resources/evaluation.html
OTHER

Goal: Create partnerships with local businesses and organizations to increase support and encouragement of active transportation.

1. Identify opportunities or partners to fund bicycle helmets for educational events like bike rodeos and/or Walk! Bike! Fun! training events.

Goal: Work to ensure all City policies and ordinances are supportive of active transportation.

2. Judiciously enforce the City of Henning’s existing and comprehensive sidewalk ordinances and regulations.

Henning would appear to have one of the more comprehensive and detailed city codes related to sidewalks seen in west central Minnesota. The section within the Henning city code with the most relevance to SRTS and the proper maintenance of sidewalks within the public right-of-way by adjacent property owners are found in TITLE IX: GENERAL REGULATIONS, Chapter 92. HEALTH AND SAFETY; NUISANCES and in Chapter 93. STREETS AND SIDEWALKS.

3. If residents are elderly and/or disabled and are not physically and financially able to remove the snow from the public sidewalk in front of their residence, look to city staff to remove snow and/or establish a volunteer snow removal program where neighbors, possibly even students help to remove the snow from these sidewalks.

4. In an effort to maintain the political popularity of SRTS and sidewalks, it is suggested that the City refrain from assessing adjacent property owners when installing and replacing sidewalks unless there is undeniable evidence that the adjoining property owner has removed or damaged the sidewalk within the recent past. Sidewalks should be viewed as a public good that are more often of greater benefit to people that live away from the property in question. As such, the cost of regular repair and replacement of the sidewalk should be born by the community as a whole as is often the case with city streets.

5. The City should investigate the addition of a Complete Streets and Sidewalk ordinance that requires the needs of all street users be considered during projects in the public right-of-way. Sidewalks should be required for all new construction and only excused if good reason can be made for their exclusion.

For more ideas, see Minnesota SRTS Model Policies Tip Sheet and the Minnesota SRTS Resource Center: http://www.dot.state.mn.us/mnsaferoutes/
In the spring of 2016, the City of Henning (City) with the Henning Independent School District #545 (School District) were awarded a Safe Routes to School (SRTS) Planning Grant from the Minnesota Department of Transportation (MnDOT) to conduct an SRTS Plan for the City and the Henning School. This plan is a product of that grant and was developed to encourage students who live within an appropriate distance of the school to walk and bike to and from school, and to do so safely. In a collaborative effort with the city, the school district, and members of the community, West Central Initiative staff developed this plan which is focused on developing strategies and identifying the infrastructure needs to help attain these goals.

PURPOSE OF THE PLAN

An SRTS plan is a multi-faceted guide for school officials, city staff, parents and educators to improve the conditions for students walking and biking to and from school. Walking or biking to and from school is an easy way for children to get the regular physical activity they need for good health. Physical inactivity and increased levels of obesity are considered a public health crisis and, as such, the Minnesota Department of Health has allocated funds and personnel through the Statewide Health Improvement Program (SHIP) to assist with SRTS programs such as Walk to School Day. Physically-active kids have fewer chronic health problems, have improved mood and concentration, a stronger self-image, and increased self-confidence and independence—all of which are critical for succeeding in school and in life. In some communities, SRTS programs have had the added benefit of reducing and, in select cases, eliminating expensive student transportation costs. The recommendations in this plan are intended to improve safety, encourage walking and bicycling,

Figure 15: New sidewalks and street lights next to the Barnesville, MN football stadium were installed after the need was identified in an SRTS plan. While the sidewalk and lights were paid for with an SRTS infrastructure grant, these amenities will benefit all who wish or need to use them.
empower students and reduce traffic congestion during the morning and afternoon school rush. Parents will only allow their children to walk to and from school if the parents are comfortable that it is safe for their children to do so. This plan was commissioned with these goals in mind.

While the primary goal of the plan is to make walking and bicycling to school a safe and desirable transportation choice, the safety improvements proposed have the potential to benefit the community as a whole. Sidewalk, trail and/or intersection improvements possibly built for students as a result of this plan will always be there for any and all who wish to walk or bike for transportation and/or recreation, whether that be a couple going for an evening stroll after dinner or an elderly widow who has no other means but to walk to her local church, convenience store, pharmacy, etc. They should also be looked upon by the community as long-term investments that have the potential to remain in use 100 years from when they are installed.

This five-to-ten year plan was developed for the city, school district and its students, and is based specifically on the school’s location, the city’s and the surrounding school district’s geography, pre-existing conditions, the school’s Walk and Bicycle Zones, strengths, barriers, opportunities and student population throughout the district. This SRTS plan uses the standard “5 Es” approach (see Chapter 2) and greatly improves the school’s and community’s chances to be awarded state and federal SRTS infrastructure grant funds.

Figure 16: Sidewalks need to be viewed as long-term, multi-generational investments similar to how street trees are treated. This sidewalk in Breckenridge, Minnesota was built by the Works Progress Administration nearly 80 years ago and remains in near perfect condition despite many harsh Minnesota winters.
CHAPTER 2: ABOUT SAFE ROUTES TO SCHOOL (SRTS)

OVERVIEW

Today more than ever, there is a need to provide options that allow all children—including those with disabilities—to walk and bicycle to school safely. Many communities struggle with traffic congestion around schools and motor vehicle emissions polluting the environment. At the same time, children in general engage in less physical activity, which contributes to the prevalence of childhood obesity. At first glance, these problems may seem to be separate issues, but SRTS programs can address all these challenges through a coordinated action plan.

SRTS programs use a variety of education, engineering and enforcement strategies that help make routes safer for children to walk and bicycle to school and encouragement strategies to entice more children to walk and bike. They have grown popular in recent years in response to problems created by a growing reliance on motor vehicles for student transportation, an expanding built environment, as well as the development and availability of federal and state funding for SRTS programs.

HISTORY

The SRTS concept began in the 1970s in Odense, Denmark, rooted in concern for the safety of children walking and bicycling to school.

The SRTS concept spread internationally, with programs developing in other parts of Europe, Australia, New Zealand, Canada and the United States. The Bronx, a borough of New York City, started the first SRTS program in the United States in 1997. In the same year, the State of Florida implemented a pilot program. In August of 2000, the U.S. Congress funded two SRTS pilot projects through the National Highway Traffic Safety Administration. Within a year of the launch of the pilot projects, many other grassroots SRTS efforts began throughout the United States.

Success with the pilot projects generated interest in a federally-funded national program. In 2003, advocates convened meetings with experts in pedestrian and bicycle issues to talk about SRTS issues.

and ideas for developing a national program. Momentum for a national SRTS program in the United States continued to build as several states developed their own programs.

Congress created the Federal-Aid Safe Routes to School Program in 2005 through comprehensive transportation legislation, ultimately resulting in nearly $1 billion in funding. Subsequent transportation legislation, Moving Ahead for Progress in the 21st Century (MAP-21) passed in 2012 making Safe Routes to School (SRTS) activities eligible to compete for funding alongside other programs, including the Transportation Enhancements program and Recreational Trails program, as part of a new program called Transportation Alternatives.

THE DECLINE OF WALKING AND BICYCLING

Not long ago, children routinely moved around their neighborhoods on foot or by bicycle, and that was often how they traveled to and from school. That is no longer the case. Whether looking at the total proportion of children walking and bicycling to school, the proportion of children who live within a mile of school or the proportion of children living within one mile of school who walk or bike, the decline is apparent.

- In 1969, 48 percent of children 5 to 14 years of age usually walked or bicycled to school.
- In 2009, 13 percent of children 5 to 14 years of age usually walked or bicycled to school.
- In 1969, 41 percent of children in grades K–8 lived within one mile of school.
 - 89 percent of these children usually walked or bicycled to school.
- In 2009, 31 percent of children in grades K–8 lived within one mile of school;
 - 35 percent of these children usually walked or bicycled to school.

The circumstances that have led to a decline in walking and bicycling to school did not happen overnight and have created a self-perpetuating cycle. As motor vehicle traffic increases, parents become more convinced that it is unsafe for their children to walk or bicycle to school. They begin driving them to school, thereby adding even more traffic to the road and sustaining the cycle. Understanding the many reasons why so many children do not walk or bicycle to school is the first step in interrupting the cycle. Many factors contribute to the reduction in children walking and bicycling to school. The U.S. Centers for Disease Control and Prevention (CDC) conducted a nationwide survey of parents to find out the most

common barriers that prevented them from allowing their children to walk to school. Parents of children aged 5 to 18 years cited one or more of the following six barrier reasons:

<table>
<thead>
<tr>
<th>Barrier Reason</th>
<th>Percentage of parents identifying with the barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to school:</td>
<td>61.5</td>
</tr>
<tr>
<td>Traffic-related danger:</td>
<td>30.4</td>
</tr>
<tr>
<td>Weather:</td>
<td>18.6</td>
</tr>
<tr>
<td>Crime danger:</td>
<td>11.7</td>
</tr>
<tr>
<td>Opposing school policy:</td>
<td>6.0</td>
</tr>
<tr>
<td>Other reasons (not identified):</td>
<td>15.0</td>
</tr>
</tbody>
</table>

While this CDC report is from 2005, a report from the National Center for Safe Routes to School in 2010 found that these barriers remain the same.

HEALTH RISKS

The U.S. Department of Health and Human Services recommends that children do 60 minutes (1 hour) or more of physical activity each day and that the bulk of this physical activity comes through aerobic exercise, such as walking and bicycling. For children and adolescents, regular physical activity helps build and maintain healthy bones and muscles, reduces the risk of developing obesity and chronic diseases, reduces feelings of depression and anxiety and promotes psychological well-being.

Despite these benefits, many children are not getting adequate physical activity. In the 2014 United States Report Card on Physical Activity for Children and Youth, the National Physical Activity Plan Alliance reports that only 24.8 percent of youth ages 12-15 years obtain 60 minutes of moderate to vigorous physical activity every day. A 2014 CDC study reports that during the school day, only 4 percent of elementary schools and 8 percent of middle/junior high schools provide daily physical education classes, and in 2012 only 58.9 percent of all school districts required that elementary schools provide students with regularly scheduled physical activity. Unfortunately, less active children are more likely to be overweight, according to the American Academy of Pediatrics.

When it comes to children’s health, the costs of inadequate physical activity and poor eating habits are alarming. Inadequate physical activity and poor eating habits are major contributors to the increased rates of childhood obesity and overweight in the United States. Obese children are at least twice as likely to become obese adults. According to both a 2003 report by the American Academy of Pediatrics and a 2015 CDC, this puts obese children at greater risk for premature death and chronic diseases than their healthy-weight counterparts.

THE 5 Es OF SRTS PLANNING

Safe Routes to School (SRTS) programs are intended to improve the health and well-being of children by enabling and encouraging them to walk and bicycle to school. The recommendations outlined in this plan are based on the “5 Es” of the National SRTS program, which include Education, Encouragement, Enforcement, Engineering, and Evaluation. An integrated approach, each one of the “5 Es” is intended to complement each other. Below is a detailed description of the “5 Es”.

EDUCATION

Programs focused on education can have long-lasting effects on students that continue into adulthood. Education programs that teach students safety skills for walking and bicycling also form the basis of good driving skills they may need in the future. Programs should also target parents and other drivers to inform them how to drive more safely around pedestrians and bicyclists. A few examples of possible education strategies are bicycle rodeos that teach safe bicycling skills, classroom lessons focused on traffic safety, take-home flyers informing parents of the rules and regulations regarding student pick-up and drop-off at the school, the Minnesota Walk! Bike! Fun! program, and thoughtfully-placed billboards with safety messages targeting drivers.

Figure 17: Bike MN instructors demonstrate to teachers how to do on-bike skill drills in a parking lot at the Rothsay, MN school.
ENCOURAGEMENT

Encouragement strategies are focused on getting students to try walking and bicycling to school and in turn, to celebrate and reward students for their efforts. These strategies can be low-cost, easy to implement and fun for students. Examples of encouragement activities include walking school buses and organizing events such as “Walk to School Day” (in October) and “Bike to School Day” (in May) to encourage students to try walking and biking to school.

ENFORCEMENT

The primary goals of enforcement strategies are to help reduce unsafe behaviors by drivers, pedestrians and bicyclists; and to increase awareness of laws protecting children who are walking and bicycling. Enforcement strategies include students, parents and school personnel working in conjunction with law enforcement officers. Examples of enforcement activities include the installation of digital speed feedback signs, adult or student safety patrol, crossing guards and educational “stings” that inform motorists of the dangers of seemingly minor traffic infractions without issuing tickets.

ENGINEERING

Engineering involves the planning and implementation of physical improvements to the built environment that make it safer and more attractive for students to walk and bicycle to and from school. For example, providing a designated space for pedestrians, such as sidewalks, has been proven to reduce pedestrian crash risks. Up to an 88 percent reduction in ‘walking along the roadway’ pedestrian crashes has been seen with
the installation of sidewalks on both sides of the road. However, engineering projects are most successful when used in conjunction with education, encouragement and enforcement strategies. Partnering with engineers and planners is crucial to the successful implementation of projects. Examples of engineering strategies include adding bicycle racks, installing fully-accessible crosswalks, sidewalks and multi-use trails, traffic calming, bicycle lanes, signs and signals, as well as other infrastructure.

Figure 19: This crosswalk is equipped with a pedestrian (push button) activated, solar-powered Rectangular Rapid Flashing Beacon (RRFB). It is located in Frazee, MN and crosses County Road 12 near the north entrance into town. It is a prime example of an engineering SRTS solution. It was installed as part of a new trail that allows students to get to school in a more direct and safer manner. Once a pedestrian presses the button located on the sign posts, super-bright yellow LED lights flash in an eye-catching “wiggle” pattern under both signs and in both directions. Otherwise, the LED lights remain turned off as seen in this photo. Driver compliance rates for crosswalks with RRFBs are significantly higher than at crosswalks without them, and can be relatively inexpensive to install.

EVALUATION

In order to measure the progress of the program activities over time, consistent evaluation is necessary. Evaluation techniques include a combination of quantitative and qualitative information. Schools are very strongly encouraged to continue conducting the National Centers for SRTS parent surveys (every two to three years) and student travel tally (once or twice a year) which were already done as part of this plan to provide baseline data. You can find the National Centers for SRTS survey forms in the Appendix C of this report. Other examples of evaluation strategies include but are not limited to school walking audits and observations of student travel behaviors arriving to and leaving school.

A 6TH E? - EQUITY

Recently, the principle of Equity has been added to the standard “5 Es” of SRTS planning. According to the MnDOT SRTS webpage:

Equity is a needs-based approach to allocating resources that aims to achieve fairness in the distribution of benefits and costs. In transportation planning, discussion of equity acknowledges that some communities and populations may require additional resources in order to have the same opportunities as other communities.

Equity is often confused with equality, when in fact they have different meanings. Equality assumes that all needs are the same. The result is that every community gets the exact same resources without regard to individual differences. Equality works only in circumstances where everyone starts from the same place and needs the same things. Equity allows resources to be provided on the basis of need. Communities disproportionally impacted by safety, health or transportation access inequities
are provided appropriate resources to address their individual needs. Therefore, resource allocation may differ between communities6.

![Diagram illustrating the concept of Equity versus Equality.](image)

Figure 21: This is a common diagram used to illustrate the concept of Equity versus Equality.

Equality is demonstrated on the left, where six boxes (units of aid) are given equally to three people despite their differences in height (need). The two boxes are more than enough for the tall person to reach the fruit high in the tree (goal). Two boxes, however, are just enough for the person of medium height but still not enough for the short person (the one with the most need) to reach the high hanging fruit. When resources are distributed equally, some people may be given more assistance than they need, while others are still not given enough.

Equity is demonstrated on the right where the same six boxes (units of aid) are distributed to three people based on their differences in height (need). The tall person is given just one box as that is all (the aid) that person needs. The person of medium height is again given two boxes as that remains the amount of boxes (aid) this person needs to reach the high hanging fruit (goal). Finally, the short person is given three boxes (units of aid) as this is the additional level of assistance that person needed to be able to reach the fruit in the tree (goal).

Source: Modified version of an image obtained from the Maine Office of Health Equity website.

The introduction of equity to the SRTS planning formula is an effort to better focus limited SRTS resources to communities and groups that have been often underserved, have greater needs and/or have been more negatively affected by transportation planning decisions of the past and the transportation infrastructure now found in their local community.

NATIONAL PHYSICAL ACTIVITY TRENDS IN CHILDREN

Today, children are not attaining the recommended amounts of physical activity, contributing to the increasing rates of obesity and a variety of chronic diseases. Lack of physical activity along with poor nutrition is the second leading cause of preventable death, according to the Minnesota Department of Health (MDH).7 Physical activity not only prevents chronic diseases but also improves moods and helps with weight control.8 There is also increasing evidence that physical activity improves academic performance, attentiveness and concentration in the classroom.9, 10, 11

There are many ways to promote physical activity among youth, and improving walking and biking to school is one of them. SRTS programs can increase students’ daily amount of physical activity and has the potential to decrease the prevalence of students becoming overweight or obese. It is recommended that children get sixty minutes of physical activity a day. Nationally, only 50 percent of high school students participated in any kind of physical activity that increased their heart rate for a total of 60 minutes on five or more days a week.12 A 15-minute walking or biking route to and from school can help students meet much of their recommended 60 minutes of physical activity per day. Walking and bicycling to school at a young age also has the potential to instill habits of an active lifestyle that children may take with them into adulthood.

SAFE ROUTES TO SCHOOL PLANNING FRAMEWORK

SRTS TEAM

Successful SRTS programs recognize each community as being unique and emphasize the importance of including a diverse range of community representation on the team. The Henning SRTS team was made up primarily of faculty and staff from the Henning Independent School District #545, the City of Henning including the city clerk, police chief and public works, Minnesota Department of Transportation – District 4, and PartnerSHIP 4 Health. The team members were directly involved in the planning process, with many having the knowledge and skills needed to implement the plan recommendations. After delivering the plan, West Central Initiative (WCI) will continue to provide ongoing technical assistance to aid in plan implementation.

SRTS PLANNING PROCESS

The SRTS planning process got its start in the fall of 2015 when City staff contacted WCI about performing an SRTS plan for the city. With the assistance and expert staff at WCI, the SRTS team came together to review the school and community profiles, provide input on the barriers, outline the vision and goals, assist in data collection, and to develop and review the recommendations. As part of the planning and outreach process, the community was invited and encouraged to provide feedback on the community’s strengths, barriers and opportunities (a kind of SWOT Analysis tailored to planning).

In addition to gathering community input, the team conducted an assessment of the community’s current conditions and policies in order to identify opportunities to advance walking and bicycling to school or programs that support active transportation. The team conducted observations to understand how many students walk and bike to and from school, what routes are the most traveled, their behaviors as pedestrians and bicyclists and the interactions between pedestrians and motorists. In addition, the team conducted a separate walk-audit of the entire community to survey its geography and infrastructure. During the walk-audit, the team recorded sidewalk conditions, child-friendly opportunities to cross streets, along with vehicle speeds, and potential trail and sidewalk connections.

Furthermore, the team helped administer the National Centers for Safe Routes to School (National Centers) student travel tally survey and a separate parent survey. The student travel tally form is used to count the number of students arriving to and departing from school by various travel modes. The parent survey collects information from parents of K-8th graders about how their children travel to and from school, their attitudes towards active transportation, and finally barriers that prevent their children from participating in active transportation modes of travel. The results were then entered into the National Center’s database.
These assessment tools illustrate the range of current barriers and opportunities, which is the foundation of the identified recommendations. These surveys are to be done yearly with continuing WCI assistance so that possible trends in student travel behavior and parent perceptions can be identified and recorded with the National Centers for Safe Routes to School database. Understanding the possible changes in student travel trends will give the school, school district and WCI staff the information they need to be able to determine if the goal of getting more children to walk and bike to and from school is being met.

All of this information was then reviewed by the SRTS team and analyzed by the staff at WCI to provide a list of recommendations to improve walking and biking to and from school structured around the active transportation planning principles of the “5 Es”.

MNDOT WALK / BICYCLE ZONE CONCEPT

Children are more likely to walk or bicycle to school if they live within the school “Walk / Bicycle Zone.” MnDOT defines this as “the area within the school’s enrollment boundary from which students can realistically walk or bike to school.” MnDOT guidelines generally assume a distance of up to 0.5 miles for children in grades PreK-5, one mile for grades 6-8, and 1.5 miles for grades 9-12 are within the Walk / Bicycle Zone.13

While not stated in any MnDOT documents, the Walk / Bicycle Zone distances are likely based on the following accepted standards. The average adult can walk a distance of 0.5 miles in 10 to 12 minutes. For a child in grades PreK-5, the same distance would likely require twice as much time (20 to 24 minutes) which is a reasonable amount of time to travel to school. For students in grades 6-8, 1 mile can likely be walked within 20 to 30 minutes, similar to an adult. However, children in these grades have the maturity to bicycle that distance, if there are no significant traffic hazard barriers. At the relaxed speeds of 8 to 10 mph (the bicycle equivalent to a modest walking pace), 1 mile can be bicycled in 6 to 8 minutes. For high school students in grades 9-12, a distance of 1.5 miles could be walked in 30 to 40 minutes. However, these students can bike that distance in 9 to 11 minutes and have the maturity to navigate even more complex traffic situations.

STATUS OF STATE AND FEDERAL SUPPORT FOR SAFE ROUTES TO SCHOOL

An SRTS plan is not required to receive Minnesota state and/or federal SRTS infrastructure grants but is highly recommended. A school and/or community with an SRTS plan will be in a better position to compete for limited funding and resources to implement the identified recommendations. Please be aware, with anticipated future changes in federal and state transportation laws, the following funding sources below are likely to change. Please contact WCI or MnDOT for updated funding information at any point in the future.

FEDERAL

In previous federal transportation laws, the SRTS program was a separately-funded category, independent of the Transportation Enhancements program (TE - bikeways, trails, sidewalks, streetscapes reconstruction, etc.) and Scenic Byways program. In 2012, Congress passed a Federal transportation bill entitled Moving Ahead for Progress in the 21st Century (MAP-21). This law combined the SRTS, TE and Scenic Byways programs into one funding source called Transportation Alternatives Program (TAP). TAP is funded from the Highway Account of the Highway Trust Fund at an amount equal to 2 percent of the total amount of federal-aid highways each fiscal year. Each state was charged with developing their own program for soliciting projects to be funded by the TAP funds allocated to them. Since MAP-21, states also have the option of redirecting 50 percent of TAP to other transportation projects.

Late in 2015, Congress passed a five-year transportation spending bill called the Fixing America’s Surface Transportation Act (FAST Act), which was then signed into law by the President on December 4th. It is the first law enacted in over 10 years that provides long-term funding certainty for surface transportation. Overall, the FAST Act largely maintains current program structures and funding for SRTS. The only difference is that Transportation Alternative Program (TAP) which provides SRTS infrastructure funding has been renamed Transportation Alternatives (TA). The FAST Act does include two modest funding increases (4 percent over the life of the Act) for TA/SRTS programs. WCI can assist communities and school districts applying for federal TA and SRTS infrastructure funds.

In 2014, the Minnesota Legislature allocated $1 million from the general fund from that fiscal year’s budget to the SRTS Program as proclaimed by Minnesota Statute 174.40. MnDOT was tasked with administering the program and allocating the funding to communities. Under the 2014 state program, requested funds could be used only for construction costs, which must be clearly identified in the SRTS budget proposal. Applications could have been submitted for projects with a total cost as low as $50,000, which made them useful for spot improvements. Regardless, it was still recommended that the minimum project cost at least $100,000 to make efficient use of the funds and limited amount of administrative time at the local level. It is uncertain if this program will receive funding again in the future.

MINNESOTA SCHOOLS STATEWIDE ENROLLMENT OPTIONS AND THE IMPACTS ON SRTS

Minnesota law allows parents whose children are Minnesota residents the choice to enroll their children in a regular public school district other than the one in which they reside. While not required to provide transportation, school districts will often send buses into the immediate neighboring districts with the practical and alluring promise of front-door pickups. To compete, local school districts have then felt compelled to offer equivalent transportation services, even for students living within immediate proximity of the local school. This has had the unintended consequence of undermining many SRTS efforts. In prior communities in which WCI has done SRTS plans, the SRTS team had observed students being picked up by the local district bus only to be transported to the school a block away, a distance walked in no more than a minute. However, some school districts have eliminated busing within the Walk / Bike Zone for students without hazardous traffic barriers after SRTS plans written at WCI made the policy recommendations to do just that.

CHAPTER 3: VISION AND GOALS

The SRTS team created a unique vision for the City of Henning (City) with the Henning Independent School District #545 (School District). This vision is what the team imagines their community will look like in five to ten years after the successful and complete implementation of the Henning SRTS Plan. In order to make the vision a reality, the team set goals to attain and barriers to overcome in pursuit of opportunities to increase walking and bicycling to and from school. The goals outlined below are that of the SRTS team. These goals are attainable through the Action Plan Recommendations section which can be found in the beginning of this document. Those recommendations were not developed to address these goals as an itemized list.

VISION

The City of Henning seeks to become a community where it is safe and convenient for all its children to walk and bicycle to, from and between schools, where our children can travel, explore and play in their community safely under their own power, and where they learn life-long habits of incorporating physical activity into their daily lives. We will seek to achieve this vision through safety awareness, education, encouragement and self-evaluation, all while building the infrastructure needed to make walking and bicycling safer and more convenient for all.

GOALS

1. Create designated safe routes to and from the Henning School.
2. Increase the sidewalk and pathway way system within the city to create a comprehensive network that makes it possible for more children to walk and bike to and from the Henning School.
3. Incorporate the Walk! Bike! Fun! curriculum into the school day to teach children safe walking and bicycling practices.
4. Look into additional walking and bicycling safety awareness and education events such as the already occurring bike rodeo.
5. Educate drivers in, and those passing through, the community, particularly truck drivers, about the need to drive at safe and prudent speeds and how to properly interact with bicyclists and pedestrians through a variety of outreach methods.
6. Enforce safe behaviors of drivers, walkers and bicyclists by working together with law enforcement, parents, crossing guards, etc.

7. Continue ongoing assessments of walking behaviors and routes.

8. Evaluate the progress of getting more children to walk and bike to school by using the standardized National Partnership for SRTS “Student Travel Tally” and “Parent Surveys.”

9. Create an environment within the public right-of-way that is more conducive to safe walking, bicycling and driving, including those with mobility disadvantages.

NOTE: The recommendations in this plan address all 9 goals identified by the Henning SRTS team.
The city of Henning is a small residential and agricultural community in the heart of west central Minnesota. It is positioned in southeast central Otter Tail County, approximately 147 miles northwest of the state capitol rotunda in Saint Paul and 90 miles east southeast of Fargo, North Dakota. Henning lies on the eastern edge of Otter Tail County’s lake region which is a premier and very popular summer vacation destination in Minnesota. Henning sits squarely within the Eastern Broadleaf Forest Biome and is directly surrounded by farm lands. However, just to the east, there are vast swaths of wetlands that limit the land’s agricultural and other resource production. Still, agriculture makes up a large portion of Henning’s economy as the one mid-sized and one small grain elevator just outside of the heart of downtown attests. Trucks hauling agricultural commodities, as well as large agricultural equipment, traverse the city at all times of the year with some of cargo going to and from the grain elevators in town. While Henning was once served by both the Northern Pacific and Canadian Pacific Railroads, only the Canadian Pacific remains. The railroad connects Henning to Detroit Lakes to the north and Alexandria to the south.

While the ancestral lands of the Dakota Sioux and Anishinaabe, the area that would become Henning began to develop with the coming of the Northern Pacific Railroad in 1882. Named after John O. Henning, the city of Henning was first incorporated in 1887.
Figure 23: Henning city limits and the location of the Henning School. Note the size of the urbanized area vs. the city limits.
Due to its location, agriculture still plays a large role in Henning. However, there are also some industry and other services within the city, as well. That said, Henning does serve somewhat as a bedroom community with most residents commuting to jobs in and near the larger cities of Perham, New York Mills, Alexandria and Fergus Falls. At the time of the 2010 U.S. Census, Henning had a population of 802 people, 364 households, and 181 families. While the city limits contains 3.38 square miles, the actual urbanized area is, at most, 0.62 square miles. Within the city limits, the population density is 237 residents per square mile but is more likely somewhere around 1,250 (approximately) if only the urbanized land and those within it are counted. The median age in the city was 50.1 years, with 21.2 percent of the residents under the age of 18 and 32.2 percent older than 65. The racial makeup of the city was 97.0 percent White, 0.2 percent African American, 0.1 percent Native American, 1.2 percent Asian, 0.1 percent from other races, 1.2 percent from two or more races and Hispanic or Latino of any race was 0.7 percent of the population. As of 2016, the top five industries in Otter Tail County are “Health Care and Social Assistance,” “Manufacturing,” “Retail Trade,” “Educational Services,” and “Accommodation and Food Services.”

![Figure 24: Douglas Avenue, downtown Henning. Photo used with the permission of John Gorentz, aka, “Spokesrider.”](Spokesrider.com)

HENNING CITY SIDEWALK ORDINANCE / REGULATIONS

Henning would appear to have one of the more comprehensive and detailed city codes related to sidewalks the author has encountered while working for WCI. It also appears that the section within the Henning city code with the most relevance to the proper maintenance of sidewalks within the public right-of-way by adjacent property owners relevant to the goals of SRTS are to be found in TITLE IX: GENERAL REGULATIONS, Chapter 92. HEALTH AND SAFETY; NUISANCES and in Chapter 93. STREETS AND SIDEWALKS.

The following are excerpts from only the SRTS relevant sections and subsections of Chapter 92. HEALTH AND SAFETY; NUISANCES.

Section 92.01 ASSESSABLE CURRENT SERVICES, Subsection B, Snow, ice, dirt and rubbish states the following:

1) Duty of owners and occupants. The owner and the occupant of any property adjacent to a public sidewalk shall use diligence to keep the walk safe for pedestrians. No owner or occupant shall allow snow, ice, dirt or rubbish to remain on the walk longer than 24 hours after its deposit thereon. Failure to comply with this section shall constitute a violation.

2) Removal by city. The City Clerk or other person designated by the City Council may cause removal from all public sidewalks all snow, ice, dirt and rubbish as soon as possible beginning 24 hours after any matter has been deposited thereon or after the snow has ceased to fall. The City Clerk or other designated person shall keep a record showing the cost of removal adjacent to each separate lot and parcel.

Subsection E, Repair of sidewalks and alleys states the following:

1) Duty of owner. The owner of any property within the city abutting a public sidewalk or alley shall keep the sidewalk or alley in repair and safe for pedestrians. Repairs shall be made in accordance with the standard specifications approved by the City Council and on file in the office of the City Clerk.

2) Inspections; notice. The City Council or its designee may make inspections as are necessary to determine that public sidewalks and alleys within the city are kept in repair and safe for pedestrians or vehicles. If it is found that any sidewalk or alley abutting on private property is unsafe and in need of repairs, the City Council may cause a notice to be served, by registered or certified mail or by personal service, upon the record owner of the property, ordering the owner to have the
sidewalk or alley repaired and made safe within 30 days and stating that if the owner fails to do so, the City will do so and that the expense thereof must be paid by the owner. If unpaid, it will be made a special assessment against the property concerned.

3) Repair by city. If the sidewalk or alley is not repaired within 30 days after receipt of the notice, the City Clerk may report the facts to the City Council and the City Council may, by resolution, order the work done by contract in accordance with law. No person shall enter private property to repair a sidewalk, except with the permission of the owner or after obtaining an administrative warrant. The City Clerk shall keep a record of the total cost of the repair attributable to each lot or parcel of property.

Much of the same sidewalk clearance and maintenance requirements, as well as some new ones, are stated in Section 92.18 PUBLIC NUISANCES AFFECTING PEACE AND SAFETY. Only those relative to SRTS goals are reproduced and are within the following Subsections:

The following are declared to be nuisances affecting public peace and safety:

A) All snow and ice not removed from public sidewalks 24 hours after the snow or other precipitation causing the condition has ceased to fall;

C) All wires and limbs of trees which are so close to the surface of a sidewalk or street as to constitute a danger to pedestrians or vehicles;

H) Obstructions and excavations affecting the ordinary public use of streets, alleys, sidewalks or public grounds except under conditions as are permitted by this code or other applicable law;

J) Any use of property abutting on a public street or sidewalk or any use of a public street or sidewalk which causes large crowds of people to gather, obstructing traffic and the free use of the street or sidewalk;

L) The allowing of rain water, ice or snow to fall from any building or structure upon any street or sidewalk or to flow across any sidewalk;

M) Any barbed wire fence less than six feet above the ground and within three feet of a public sidewalk or way;

However, there are portions of Chapter 93. STREETS AND SIDEWALKS that are relevant to the goals of SRTS. Those include the select following sections and subsections:
§ 93.01 UNLOADING ON STREET OR SIDEWALK. No person shall unload any heavy material in the streets of the city by throwing or letting the material fall upon the pavement of any street, alley, sidewalk, or other public way, without first placing some sufficient protection over the pavement. Penalty, see § 10.99

§ 93.02 STREET AND SIDEWALK OBSTRUCTION. No person shall obstruct any street, alley, sidewalk, or other public way within the city by erecting thereon any fence or building, or permitting any fence or building to remain thereon. Each day that any fence or building is permitted to remain upon the public way shall constitute a separate offense. Penalty, see § 10.99

§ 93.03 MATERIALS ON STREET OR SIDEWALK.

(A) No person shall encumber any street, sidewalk, or right-of-way. No owner, occupant, or person having the care of any building or lot of land, bordering on any street, sidewalk, or right-of-way shall permit it to be encumbered with barrels, boxes, cans, articles, or substances of any kind, so as to interfere with the free and unobstructed use thereof.

(B) Except for the actions of the city employees and contractors carrying out their duties, no person shall:

(1) Obstruct any street or sidewalk by depositing snow or ice thereon;

(2) Dig any holes in any street, sidewalk or right-of-way;

(3) Remove any earth, gravel, or rock from any street, sidewalk or right-of-way;

(4) Obstruct any ditch draining any street or drain any nuisance materials into any ditch;

(5) Deface, mar, damage, or tamper with any structure, work, material, equipment, tools, signs, markers, signals, paving, guardrails, drains or any other highway appurtenance on or along any street, sidewalk or right-of-way.

(6) Remove, injure, displace, or destroy right-of-way markers, or reference or witness monuments, or markers placed to preserve section or quarter-section corners; 2010 Supp. Streets and Sidewalks 69

(7) Drive over, through, or around any barricade, fence, or obstruction erected for the purpose of preventing traffic from passing over a portion of a street or sidewalk closed to public travel or to remove, deface, or damage any such barricade, fence or obstruction. Penalty, see § 10.99
HENNING SCHOOL DISTRICT AND SCHOOL PROFILES

HENNING INDEPENDENT SCHOOL DISTRICT #545

The Henning Independent School District #545 is the home of the Hornets and is located in the Henning School at 500 School Avenue, Henning, MN 56551. Dr. Jeremy Olson is the superintendent and Thomas Williams is the principal of the PreK-12 Henning School as of the date on this plan.

HORNET EXPECTATIONS

Hornets are:

HELPFUL
OBEIDENT
RESPECTFUL
NEVER GIVE UP
ENCOURAGING
TRUSTWORTHY

Source – Henning Independent School District #545 website

The District itself, like many in Greater Minnesota, is somewhat large. It encompasses 172 square miles that is a mix of farm, woods, lakes and wetlands, all of which are within eastern Otter Tail County. Henning and its schools sit almost central within the District. From the school, it is no more than 10 bee-line miles to any corner within the district, save a small area that sits along Otter Tail Lake. Also within the district are the city of Vining (2010 pop. 78) and the tiny unincorporated village of Almora (Figure 25).
Figure 25: Henning city limits, and the location of the Henning School with concentric radii in miles from that location.
HENNING SCHOOL DISTRICT STUDENT TRANSPORTATION POLICIES

The District has two transportation policies deemed directly relevant to SRTS. Reviewed for this plan were policy “707 Transportation of Public School Students” and policy “709 Student Transportation Safety Policy.”

Policy “707 Transportation of Public School Students” was originally adopted in 1995 and was revised last in 2012. It articulates the legal requirements of the school district to provide transportation to students within district boundaries. It is a general policy stating the ground rules governing which students are eligible for school district-funded motorized transportation to and from school and other school functions and services consistent with the requirements of law. It “recognizes that transportation by school bus is a privilege and not a right for an eligible student.” Of note in this policy is that the school district will provide transportation “for all resident students who reside two miles or more from the school” as per state statute (Minn. Stat. § 123B.88, Subd. 1) and “may, in its discretion, also provide transportation to any student to and from school, at the expense of the school district, for any other purpose deemed appropriate by the school board”.

The “709 Student Transportation Safety Policy,” was originally adopted in 1995 and last revised in 2012. Like most other 709 policies in the State of Minnesota, it is a detailed document focused on transporting students to school via school buses. The policy states, “The purpose of this policy is to provide safe transportation for students and to educate students on safety issues and the responsibilities of school bus ridership.” However, it does include several lines regarding and even promoting walking and biking. The policy states that, “The school district may provide student safety education for bicycling and pedestrian safety for students in grades K through 5.” Note that the term “may” leaves latitude in this policy statement. Like most other 709 policies, this one also states that “Parents/Guardians are responsible to … support safe riding and walking practices, and recognize that students are responsible for their actions.” While again the policy states that “transportation by school bus is a privilege, not a right,” Like all other 709 policies, it does not offer specific guidelines for students living within safe walking and biking distance to school as defined by MnDOT’s Walk / Bicycle Zone concept. (See Chapter 2) Besides the one policy allowing, but not mandating, bicycle and pedestrian safe education in grades K through 5, there are no specific guidelines for students, parents, teachers and administrators for those students who choose to walk and/or bike to and from school. For example, there are neither guidelines for when and where crossing guards are warranted, nor are there guidelines for crossing guard qualifications and training. By comparison, there are multiple pages detailing the qualifications and training of school bus drivers, their duties and responsibilities, operating rules, as well as school vehicle maintenance standards among many other details regarding school bus operations.
HENNING SCHOOL DISTRICT STUDENT WELLNESS POLICY

The District "533 Wellness" policy was originally adopted in 2005 and then last readopted in 2010 and is, overall, very supportive of the same goals generally pursued by SRTS. “The purpose of this policy is to assure a school environment that promotes and protects students’ health, well-being, and ability to learn by supporting healthy eating and physical activity.” It also states that, “Students need opportunities for physical activity and to fully embrace regular physical activity as a personal behavior. Towards that end, physical education and health education will reinforce the knowledge and self-management skills needed to maintain a healthy lifestyle and reduce sedentary activities,” which is very supportive of the mission of SRTS. It also states that “All students in grades K-12 will have opportunities, support, and encouragement to be physically active on a regular basis.” And while the policy “will support parent’s efforts to provide a healthy diet and physical activity for their children,” there is no such direct statement as is often found in other Wellness policies that “Schools shall encourage bicycling and walking to and from school.”

THE HENNING SCHOOL

The Henning School is located in the southwestern section of the city. Today’s modern school was built on the site of the first Henning School. Through a series of additions, renovations and demolitions, the original building that was located on the northeast side was torn down and replaced with the modern structure that today houses the elementary school grades. The Henning School houses grades PreK-12 and is well located in the city. Being surrounded by residences, the school is already ideally-situated for almost all students who live in the city to walk and bike to school. The only concerns are the three major roads in close proximity to the school (Marshall, Inman and Douglas Avenues) and the Canadian Pacific Railroad on the north end of town.

In September 2016, the Henning School had an enrollment of 394 students. The breakdown of students per grade is shown in Table 1. 42 percent of Henning School students are eligible for free and reduced cost

Figure 26: The northwest “high school” entrance of the Henning School.
meals. Of the 394 students attending, it was roughly estimated by the principal that 100 students, or 25%, live within the city limits of Henning. Due to the small size of the city, these students are prime candidates to walk and/or bike to and from school.

<table>
<thead>
<tr>
<th>Grade</th>
<th># Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>34</td>
</tr>
<tr>
<td>1st</td>
<td>35</td>
</tr>
<tr>
<td>2nd</td>
<td>17</td>
</tr>
<tr>
<td>3rd</td>
<td>33</td>
</tr>
<tr>
<td>4th</td>
<td>21</td>
</tr>
<tr>
<td>5th</td>
<td>18</td>
</tr>
<tr>
<td>6th</td>
<td>36</td>
</tr>
<tr>
<td>7th</td>
<td>29</td>
</tr>
<tr>
<td>8th</td>
<td>28</td>
</tr>
<tr>
<td>9th</td>
<td>38</td>
</tr>
<tr>
<td>10th</td>
<td>38</td>
</tr>
<tr>
<td>11th</td>
<td>32</td>
</tr>
<tr>
<td>12th</td>
<td>35</td>
</tr>
</tbody>
</table>

In 2012, the elementary school section of the Henning School earned “Reward School” designation from the Minnesota Department of Education.

RECOMMENDATIONS

Policy recommendations to improve SRTS can be found in the beginning of this document in the sub-chapter titled “Action Plan Recommendations” in the “Encouragement” and “Other” sections, with further policy recommendations found in Appendices D and E.
A strengths, barriers and opportunities analysis of existing policies and programs related to walking and bicycling to school was also performed. This is similar to a SWOT Analysis (Strengths, Weaknesses, Opportunities and Threats) but tailored for use in SRTS planning. The comments in the following tables are not edited and are not listed in any priority order. Recommendations to improve SRTS found in the sub-chapter titled “Action Plan Recommendations” at the beginning of this document have taken into consideration Henning’s unique strengths, barriers and opportunities.

STRENGTHS

The City of Henning and the Henning School have many strengths to work with similar to many other communities in west central Minnesota. Identifying and understanding those strengths are key with regards to any SRTS plan. The strengths listed in detail (see Table 2) below were gathered by the Henning SRTS team.

<table>
<thead>
<tr>
<th>Community Strengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Henning, while small, has a dense, contiguous suburban form with an active downtown with industrial centers well positioned at the edges of the city.</td>
</tr>
<tr>
<td>2 The school is well positioned in the southwest corner of Henning and is well connected to residential neighborhoods for those who walk and/or bike.</td>
</tr>
<tr>
<td>3 Henning is small with all residences in the urbanized area of the city no more than six tenth of a mile from the school.</td>
</tr>
<tr>
<td>4 Traffic volumes on most roads are very light making it easy for most people to walk and/or bike as is.</td>
</tr>
<tr>
<td>5 City hall is already committed making Henning a better place to walk and has invested in new ADA, PROWAG compliant sidewalks on many streets in Henning including several that never had sidewalks before.</td>
</tr>
<tr>
<td>6 Many students already walk and bike to both schools as seen during the walk audit.</td>
</tr>
</tbody>
</table>
BARRIERS

To successfully develop and implement SRTS activities and programs, it was important for the SRTS team to identify and understand the existing barriers within the community that are preventing children from walking and bicycling to school. These barriers, listed in detail in Table 3 below, are an accumulation of information received from the SRTS team.

Table 3: Community and School District Barriers

<table>
<thead>
<tr>
<th>Community Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Likewise the Canadian Pacific Railroad on the northeast corner of town creates a barrier for those living on the northeast side of the tracks from walking / biking downtown and to the school. There are only crossings at Inman and 2nd Streets and neither has a sidewalk nor an ADA compliant sidewalk crossing of the railroad tracks.</td>
</tr>
<tr>
<td>3. Many busier streets in close proximity to the school do not have sidewalks including, School, Front and Inman Streets, and Hipple Avenue.</td>
</tr>
<tr>
<td>4. Henning experiences a fair amount of heavy agriculture equipment and truck traffic particularly on State Highway 108 – Douglas Ave and Marshall Ave – County 65. Marshall Ave is used as a shortcut by many and it runs right next to the school.</td>
</tr>
<tr>
<td>5. While the Northern Pacific Railroad is long gone, the grain elevator remains next to where the railroad once went through Henning. The elevator is still very active and is located next to the heart of Henning and is a source of much of the heavy commercial truck traffic in Henning.</td>
</tr>
<tr>
<td>6. The occasional car and overgrown tree was seen blocking the sidewalk.</td>
</tr>
</tbody>
</table>
OPPORTUNITIES

The SRTS Team identified opportunities to improve walking and bicycling to school that are not currently being acted upon. The list of opportunities in Table 4 is not exhaustive but is an accumulation of ideas and action steps to help achieve the overall vision.

Table 4: Community and School District Opportunities

<table>
<thead>
<tr>
<th>Community Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
The SRTS team conducted school observations, a community walking audit and a neighborhood assessment. This was done to identify the existing conditions within the city of Henning and near the Henning School. Traffic volume and crash data were also retrieved from MnDOT's databases for the roads in and around Henning. And while the SRTS team is a core group of individuals who are very familiar with Henning, its schools, SRTS and active transportation planning, broader community input is always helpful to create a comprehensive list of existing conditions and concerns. To gather additional community input, a table was set up at the Henning School parent-teacher conferences during both the elementary sessions (November 15th and 17th) and the one high school session (December 12th) (See Chapter 7.) Having information on existing conditions is critical in making strategic decisions that support wise and fiscally-sound future SRTS programming and activities.

HENNING WALK / BICYCLE ZONES

As discussed in Chapter 2, MnDOT guidelines generally assume that students can realistically walk and / or bike to and from school up to a distance of 0.5 miles for children in grades PreK-5, 1 mile for grades 6-8, and 1.5 miles for grades 9-12. Due to the small size of Henning, just the one-quarter and one-half “Walk / Bicycle Zones” are shown in Figures 27. The Walk / Bike Zones are typically measured using bee-line radii from the main entrances of the school. For the Henning School, a central point between the elementary school and high school entrances at the south side of 2nd Street and School Avenue was chosen. From this point, approximately 45 percent of the residences in Henning were within the quarter-mile Walk / Bike Zone. The entire town was within the half-mile Walk / Bike Zone. A half-mile is considered an appropriate distance for children in grades PreK through Five to walk and/or bike to and from school. Therefore, all students living within urbanized Henning should be able to do so, with assistance for the younger ones. Distances and walking and biking times to the school using the city street network at various points throughout Henning was measured with Google Maps and calculated per the metric noted in Figures 27. (For bicycling travel times, see Figure 14 in the Action Plan.) The furthest residence measured from the school in this exercise is the northern most home located on Jensen Avenue near the baseball diamond. Outside of urbanized Henning, there are several homes and farmsteads that are within two road-miles of the school; most notably, just to the south (Inman Avenue, Brandborg Creek Road), west (490th Avenue) and north (Marsh / 500th Avenue) which would require students to walk or bike on very low-trafficked township gravel and possibly field access roads. While not the typical SRTS suggestion, there is no reason older students living two miles away could not bicycle these quiet roads to get to school. Other locations are not suggested due to the traffic speed on highways, like State Highway 210 east of town.
Figure 27: Henning Existing Conditions – Distance and Walk/Bike Travel Times. Basemap Aerial Imagery via Google Maps.
WALK AUDIT

A walk-audit of the city of Henning was conducted in October and November of 2016. This is done to gather data related to major streets, intersections and sidewalk conditions impeding or facilitating pedestrian and bicyclist safety. Factors that were documented include sidewalk width and condition, possible ADA PROWAG (Public Right-of-Way Accessibility Guidelines) violations, traffic volume, terrain, threatening features (dogs, perception of criminal activity, highways and busy intersections), trash, speed limits and general safety. The audit provided an opportunity for the team to identify where the community is walkable and where there are opportunities for improvement. The results of the sidewalk survey can be found in Figures 27 and 31 and are discussed throughout the narrative of this section of the report. Areas of particular concern are listed in a table at the end of this chapter.

Henning School

As noted in Chapter 4, the Henning School houses grades PreK-12. It is positioned in a location highly-conducive to walking and biking to school and is nearly surrounded by residences. However, there are some concerns and conditions at the school itself. It is regularly noted among SRTS experts that the area closest to schools can be the most dangerous part of the journey for children who walk and bike to school. This is due to the multitude of traffic modes converging at the front door of the school. Exacerbating this, the design of school grounds are often primarily focused on the circulation of motor vehicle traffic flow with an emphasis on front door drop-off at the unintended safety expense of those arriving on bike or foot. The Henning School is no exception. Without enough curb space to line up six school buses parallel to the curb to pick up students during afternoon dismissal, it has widened School Avenue in front of the school to 52 feet to park
buses at a 45-degree angle while still providing parallel car parking on the north side of the street. To make the road this wide, it appears that a good deal of boulevard and sidewalk space was taken away from the front of the school. This leaves the area in front of the school rather pressed for space. The sidewalk in front of the elementary school section is only five feet wide which likely leads to crowded conditions and spillover into the street as students arrive and depart school en masse.

Along with creating a very large and empty “automobile space” directly in front of the school, this arrangement with the school buses, particularly in the afternoon, has been recognized as being less than ideal by the Henning School staff, city officials, as well as with parents as noted in both the feedback and parent survey comments. To help with the situation, there are adult crossing guards at both the 2nd Street and the elementary school crosswalks to guide both motor and non-motorized traffic. They act as a second set of eyes

Figure 29: The fire hydrant located several feet into School Avenue in front of the school would seem to indicate the curb was at least once several feet further out into the street than it is today.

Figure 30: This photo shows the lack of space between the building front at the elementary school portion of the school and the curb line. There is just enough room for the bike rack but that is rather close to the accessibility ramp.
Figure 31: Henning School Existing Conditions – Detail. Basemap Aerial Imagery via Google Maps.
for students walking between the buses. The city has even gone so far as to close a section of School Avenue to all non-school traffic during dismissal to reduce the traffic volume at the school. However, even with these countermeasures, there is still a great deal of rather disorganized traffic activity happening on School Avenue in front of the school that many students must traverse as they walk and bike home from school.

A contributing factor to the confusion experienced in the morning, but more so during the afternoon dismissal, is the large gravel parking lot across from the elementary school entrance. It does not make efficient use of space that could alleviate some of the marginal parking practices seen on the west end of School Avenue near the high school entrance (more in next paragraph). Without any markings, curbs sidewalks, etc. the gravel lot as is, does not provide circulation guidance that could move traffic away from School Avenue.

Figure 32: This photo gives an example of the amount of activity going on at the Henning School elementary entrance. Buses lined up and waiting to board students block the visibility of pedestrians trying to cross until they are in the opposing lane. Meanwhile, parents waiting to pick up their children are exiting the parking lot (white van) but must leave to the east on School Avenue. Note the paraprofessional crossing guard in the hi-vis vest.

Figure 33: The large gravel lot across from the elementary school entrance does not make efficient use of space. Without any markings and/or curbs, it does not provide circulation guidance that could remove traffic from School Avenue.
On the west side of School Avenue near the high school entrance, traffic conditions are lighter. However, here there are issues with through traffic on Marshall Avenue, high school students who drive to school, and with parking in general. Of these three, the parking of vehicles on School Avenue appeared to be of the greatest concern. One car was observed parked too close to the stop sign on the west end of School Avenue in violation of Minnesota law that requires vehicles be parked no closer than 30 feet from a stop sign. The parking lot under the water tower was filled beyond capacity and the front-in angle parking directly across from the high school entrance requires drivers to back into the street when students may be leaving by walking and biking. These overflow and hazardous parking conditions could be easily remedied by eliminating some of the questionable and hazardous parking spaces and relocating that parking to the half-filled and underutilized gravel parking lot over by the elementary school entrance.

Figure 35: A car parked too close to the stop sign in violation of Minnesota law that requires vehicles be parked no closer than 30 feet from a stop sign. This not only makes the stop sign difficult to see but it blocks the view of pedestrians crossing at the crosswalk just ahead.

Figure 34: Note the cars parked “nose-in” just behind the white pickup. Backing out of any spot is known to be potentially hazardous as visibility and sightlines are reduced. Also, note the crowded parking conditions on the street, particularly at the far left end near the intersection with 2nd Street. Crowded on-street parking conditions are unnecessary with a half-empty parking lot a block away.
There are several traditional “schoolyard” style bike racks located very close to the high school entrance and one more at the elementary school entrance. (See Figures 30, 31 and 36) The locations of the bike racks near the main entrances and placement on concrete surfaces is in compliance with the bicycle parking standards established by the Association of Pedestrian and Bicycle Professional (APBP). However, the racks might be positioned as to not obstruct pedestrian movements.

Also, the rack design does not comply with the APBP standards because of concerns that the schoolyard rack only offers one point of contact for stability and security. The rack can also bend the bicycle wheels as the wheel is designed to be the only point of contact. These are legitimate concerns in locations with high bicycle theft and vandalism. However, in a community with negligible crime, these bicycle racks, particularly the traditional schoolyard rack, work very well and are exceptionally good at keeping the bicycles organized. In fact, this old style of bike rack is still the preferred choice for schools in the city of Davis, California known as the most bike-friendly town in the U.S. The school system in Davis does not provide busing due to its comprehensive network of bike routes and lanes. Security, if a concern at schools, may be best addressed with rack placement near an office or placing the racks in a fenced-in corral.

Finally, some sidewalks immediately adjacent to the school were missing, particularly just east of the school on School Avenue and Front Street and on the east side of Marshall Avenue just south of Hipple Avenue. Henning has tried to address some of these shortcomings on a short-term basis by painting crosswalks on School Avenue where it crosses both Front and Inman Streets. Hipple Avenue, just south of the school, also does not have sidewalks. Its narrow nature and very low traffic volume does not make it a candidate for sidewalks at all.
The City of Henning

Because it is a small town of around 800 people surrounded by thousands of acres of farm and forested lands, Henning simply does not receive the volume of traffic that many other cities do, even when compared to some of its peers in rural west central Minnesota. State Highway 210, classified as a “Principal Arterial,” is a major east-west highway across Minnesota from Duluth to Breckenridge. Many years ago, it was re-routed just south of town from its old route down Inman Street. Its new location bypassed Henning and has taken with it a good portion of the through traffic in the area. Douglas Avenue – State Highway 108 is classified as a “Minor Arterial”. It handles close to the same amount of vehicles in town as Highway 210. Its traffic is mostly local as traffic volume quickly drops off north and west of town. And while it does not see a large amount of traffic, the traffic Henning does see has a large percentage of heavy commercial truck traffic mixed with large farm equipment. (See Traffic Volume later in this chapter for more details.)

While the Henning School is well-connected to the surrounding residential neighborhoods, there are areas of concern in close proximity to the school besides the lack of sidewalks mentioned in the previous section. Marshall Avenue – County 65 just to the west of the school is a county road that serves as a shortcut between State Highway 210 from south of town and State Highway 108 exiting/entering from the northwest. Trucks and large farm equipment were seen on Marshall Avenue. Inman Street – County 67, just two blocks to the east, is an entryway into Henning from the east. It does not have sidewalks along any portion of its length through Henning. While these three roads, in close proximity to the school, (Marshall, Inman and Douglas Avenues) are of concern, traffic is not extreme and can be easily managed with some continued investments and intelligent countermeasures. And again, with nearly all students residing within the urbanized area of Henning living within a half-mile of the school, almost all students in this area of Henning should be able to walk and/or bike to and from school.

Figure 37: An example of the excellent sidewalk conditions found on a majority of streets with sidewalks in Henning. Note the ample tree boulevard to the left.
Elsewhere in Henning, it is clear that the city has been making investments to fix, replace and install new sidewalks as fresh concrete was seen all over town. These include what appear to be Americans with Disabilities Act, Public Right-of-Way Accessibility Guideline (ADA, PROWAG) compliant curb ramps. Long, new sections of sidewalks were seen on Fergus, Holden and Marshall Avenues but these are believed to be replacements for what was already there. Poulson Avenue, several blocks north of the school and to the immediate west of Marshall Avenue, has brand new sidewalks where there never were sidewalks before. Finally, it should be noted that while the sidewalk on the east side of 2nd Street running from Douglas Avenue to School Avenue may be old, it is also eight feet wide. It is clear that those who built this sidewalk intended it to be a major walking route to and from the school. The sidewalks downtown on Douglas Avenue are at least 10 feet wide. For at least a half a block north and south on 2nd and Front Streets, they are eight feet wide. This is also a sign that previous city planners in Henning were anticipating a greater amount of pedestrian traffic downtown and on their approach to downtown. It also appears that most streets in Henning have a wide right-of-way behind the curb as is evidenced by the position of the sidewalks far from the curb.

Figure 38: This nice spruce tree was planted too close to the sidewalk and is now an obstruction. The sidewalk is in poor condition and is even missing a few panels at this location.

Figure 39: A vehicle parked on a sidewalk may be a minor annoyance for able-bodied persons, but it can be a real barrier for someone with a disability, particularly in snow.
However, there are still a few issues with Henning’s sidewalks. There were several obstructions caused by illegally parked vehicles, sidewalk disrepair and overgrown vegetation but these obstructions were nowhere near as common as has been seen in other communities in west central Minnesota. In other areas, the sidewalks were narrow and in very close proximity to the street making for a less than comfortable walking experience. This was noted on the eastern end of Douglas Avenue. Also, where new sidewalks have not been installed, curb ramps have not been updated to meet ADA, PROWAG standards. That said, because it is relatively flat in most locations, it should be much easier and cheaper for Henning to install sidewalk improvements that meet PROWAG, ADA standards.

Finally, it must be noted that Henning has some very distinct and notable axes and four of the five focus on the school. (Figure 41) Without looking further into Henning’s history or past master plans, it does seem that the placement of the Henning School was very deliberate. Its location was intended to be the focus of the community as a source of civic pride but also to maximize efficiency for the students walking and biking to school. This clever planning by generations long past can still work in Henning’s favor today. In this SRTS plan, these axes were the basis for identifying priority corridors for where improvements should first be focused.

Figure 40: This narrow sidewalk on Douglas Avenue near Inman Street makes for less than desirable walking conditions. If parking is not needed here or in similar situations, moving the curb toward the centerline a few feet may create a buffer using a tree boulevard.
Figure 41: Henning Community Axes. Basemap Aerial Imagery via Google Maps.
Street, Lane, and (if present) Shoulder Widths

Street design and lane width can provide subtle clues to drivers as to the safe operating speed on a particular stretch of roadway. Recent thinking today is that bigger is not always safer and that wide road and lane widths can encourage drivers to speed, even unintentionally. They also require pedestrians to spend more time in the roadways when crossing, extending the time that they are exposed to potentially hazardous motor traffic. Wide streets and lanes, however, can provide the space needed within the right-of-way to retrofit bike lanes, sidewalks, wider sidewalks, tree boulevards, etc.

For the most part, most residential city streets are of an appropriate narrow width of 34 to 36 feet which is conducive to walking and biking. Narrower street widths keeps motorist speeds down. It is enough space to accommodate on-street parking on both sides but requires drivers to operate their vehicles more slowly to navigate between the remaining space. Some streets like Milne, Hipple and Peterson Avenues are even narrower at just 24 and 26 feet. Because these streets are narrow, they make fine “mixed-use” streets where bicyclists and pedestrians share the roadway with automobiles, if speed limits are reduced. Beyond the naturally wider state and county highways in Henning, there are some notable exceptions where city streets have been widened beyond 36 feet. 2nd Street on either side of Douglas Avenue has been widened to 60 feet to accommodate angle parking even though the parking demand observed never seemed to warrant it. Holden Avenue, on either side of 2nd Street, is also between 46 and 54 feet wide but here the occasional parking demand at the churches and funeral home would seem to warrant additional parking capacity.

Speed and Speed Limits

High vehicle speeds have long been known to be a significant safety hazard to pedestrians and bicyclists. According to AAA in the U.S., if a pedestrian gets hit by a car traveling at 20 mph, there is approximately seven percent chance of death. The fatality rate climbs to 90 percent for a pedestrian struck at 60 mph. According to AAA, the greatest rate of fatality risk increase happens between the speeds of 25 and 45 mph, increasing from 12 percent to 60 percent. Other studies reveal the 45-mph pedestrian fatality rate as high as 85 percent. High-speed traffic also creates noise and induces stress on pedestrians, making even wide, well-designed sidewalks unappealing places to walk.

All roadways in the urbanized portions of Henning are either marked or assumed to be 30 mph. There are several exceptions to this where local streets have been signed for only 20 mph and those include:

- Balmoral Avenue between Marshall Avenue and Inman Street.
- All of Poulson Avenue.
- All of Fergus Avenue.

Marshall Avenue is marked a 20-mph school zone when children are present and/or between 8 am and 4pm between a point just south of Fergus Avenue to a point just north of Front Street.

See Figure 43 for a complete map of Henning speed limits.

Figure 42: The two sets of signs marking the beginning of the school zone on Marshall Avenue just south of Fergus Avenue.
Figure 43: Henning Existing Speed Limits and School Zones. Basemap Aerial Imagery via Google Maps.
In 1977, due to the merger of the Northern Pacific and the Burlington Railroad, the Northern Pacific spur tracks from Wadena to Fergus Falls were removed in Henning. That left only the Soo Line, now operated by the Canadian Pacific Railroad, passing through town. While a Class 1 railroad, the amount of train traffic during the time the author was in Henning seemed to be minimal. Referencing MnDOT’s Freight Railroad Map (June 2015) revealed an average of only 9 trains per day operate on this line of the Canadian Pacific Railroad from Glenwood, Minnesota all the way up to the Canadian borderer. The maximum speed trains can operate in Henning is 40 mph. Besides the slow operating southbound train photographed above, another much faster northbound train was observed during the author’s time in Henning.

It is fortunate that the railroad’s location on the north side of Balmoral Avenue only separates a small number of residents from the south side of the tracks where the school is located. However, north of the tracks is the Henning Mobile Home Park and mobile home parks, like apartment complexes, tend to have a higher number of students. There is a signalized road crossing with a gate at Inman Street and a simple signed crossing with no active beacons or gates at 2nd Street. While more robust crossing treatments with sidewalks at both crossings are recommended, the low amount of train traffic through Henning and the slower operating speeds should not preclude older, more mature students who live north of the tracks from walking and biking to and from school.

No longer in operation, the tracks removed and much of the right-of-way abandoned, the Northern Pacific spur ran from Fergus Falls to Wadena and once traversed Henning between Front Street and Inman Avenue. Had the Northern Pacific remained in operation, it would have separated many more residences from the school.

Figure 44: A Canadian Pacific train slowly crosses Inman Street and positions itself onto a siding just to the south to let a northbound train pass.
OBSERVATION DAY RESULTS

To gain a better understanding of how students, parents, bus drivers, teachers and staff operate and interact during morning arrival and afternoon dismissal at the Henning School, an Observation Day was held on Tuesday, October 11, 2016. An additional observation was also made during the lunch hour as the Henning School has an open campus where high school students can leave school grounds and either go home or into town for lunch. Members of the SRTS team conducted field observations of students' travel behaviors, patterns and mode choices during morning arrival and afternoon departure. Team members were strategically-positioned around the school and at select locations in Henning. They were tasked with counting the number of student pedestrians and bicyclists traveling to school and which routes they took. They also observed whether students were using good techniques when crossing the street and how motorists behaved in relation to pedestrians and bicyclists on the streets and on school grounds. Detail of observations will depend on level and concentration of activity at that location and may vary at times at a single location.

Morning Observations

- Local weather at the Henning School:
 7:30 am – 48 °F. Mist and Drizzle. Wind – Calm.
- Observations began at 7:30 am with school starting at 8:30 am.

NOTE! Twilight conditions at start of observations.

Post 1: School Avenue at Elementary Entrance – Andrew J. Besold

- Walkers - 19.
- Bicyclists – 0.
- Scooter -1.
- Cars – 23.
- Buses arrived at the following times: 7:53, 7:54, 7:54 + 20 sec, 7:55
- Para Transit Van at 7:43, 7:53, 8:05.
- Buses block view of sidewalks.
- Good yielding of driver to adult pedestrians.
Post 2: Marshall Avenue and School Avenue – Wayne Hurley

- Walkers - 19.
- Bicyclists - 1.
- Still pretty dark by 7:15 am.
- Student on scooter used crosswalk but rode in the street.
- Lots of traffic in school garages.
- Truck parked on Marshall Avenue blocked view of crosswalk.
- Two students on bikes walked the remaining distance from corner of School Avenue and Marshall Avenue.
- Most student bike/ped traffic coming from the northwest.
- High school students park in school bus garage lot. Did not use crosswalk.

Post 3: Hipple Avenue and Front Street – Kay

- Walkers – 2.
- Bicyclists – 0.
- Four-way stop okay. Complete stops observed.

Post 4: Douglas Avenue and 2nd Street – D.B.

- Walkers – 3 (two adults, one student).
- Bicyclists – 1.
- Cars – 118.
- Trucks – 15 (many dump trucks).
- Farm tractors – 2.
- At 7:56, a semi-truck stopped for bicyclist at crosswalk.
- Sidewalks and marked crosswalks.
- No signage (Used to have one.)
- Students used the crosswalks and waited for traffic to stop.
- 30 mph Douglas Avenue.
- Some driving over 30 mph.
- Harvest time, extra farm traffic.
Post 5: Balmoral Avenue and 2nd Street – Donna Smith

- Walkers – 1.
- Bicyclists – 0.
- Bus made a loop through the trailer park. Used all signals and stopped for RR tracks.
- One student walked from trailer park.
 - Students used good techniques when crossing the street.
 - Students walked on the edge of road–seemed very aware.
 - There were no sidewalks for student to walk on. Debatably safe.
- Two vehicles traveling quite fast on Balmoral Avenue.

- Walkers – 1.
- Bicyclists – 0.
- Crossed street and then walked on street parallel to sidewalk.
- Students are using crosswalks.
- Sidewalks present.
- Vehicles seem to be following the speed limits.

Post 7: Inman Street and State Highway 108 – Scott Grobe

- Walkers – 1.
- Bicyclists – 0.
- Students cut across to the alley by the pub.
- 3 painted crosswalks.
- Grain truck lined up – makes it hard for cars to see around intersection.
- Gas station traffic.
- Sidewalks on Douglas, not on Inman.
- Sidewalks are not separated from the street by a boulevard.
Post 8: Marshall and Fergus Avenue – Gina Ellingson
- Walkers – 5.
- Bicyclists – 4.
- The students are using good techniques when crossing the street.
- Good sidewalks on all streets; curbs are ramped.
- Vehicles are traveling fairly fast on Marshall Avenue. Lots of traffic coming down Poulson, turning right on Marshall toward school.

Post 9: School Avenue and 2nd Street – Tammy Froemming
- Walkers – 25.
- Bicyclists – 7.
- Scooter – 1.
- Parent drop-offs – 34.
- 1 Grain truck
- Students used the crosswalks and the sidewalks.
- Vehicles seem to follow the speed limits.

Post 10: Inman Street and Hipple Avenue – Mike Helle
- Walkers – 0.
- Bicyclists – 0.
- No sidewalks in place from school to Inman Street. No sidewalks on Hipple Avenue.
- High traffic area between school/Inman Street and Post #10.
- No crossing guards / patrols.
Figure 45: Henning Observation Day Posts - October 2016. Basemap Aerial Imagery via Google Maps.
Afternoon Observations

- Local weather at the Henning School:
 3:00 pm – 45 °F. Drizzle. Wind – Calm.
- Observations began at 3:00 pm and ended at 3:40 pm.

Post 1: School Avenue at Elementary Entrance – Andrew J. Besold

- Walkers – 3.
- Bicyclists – 0.
- School van arrived at 3:20, departed at 3:30.
- One student walked home across gravel parking lot, another east on School Avenue (no sidewalks).
- Four parent vehicles waiting in parking lot (turned east on School Avenue to leave), two waited in alley next to the school and three more waited on School Avenue east of school.

Post 2: Marshall Avenue and School Avenue – Patrick Hollister

- Walkers – 24.
- Bicyclists – 8.
- Buses came from Floyd to Marshall to School Avenue.
- Speeds seemed reasonable and roads seemed generally safe to walk on.
- Some students were using good techniques when crossing and were seen crossing mid-block and at crosswalks.

Post 3: Hipple Avenue and Front Street – Kay

- Walkers – 2.
- Bicyclists – 0.
- Heavy traffic cars and buses. One 4-wheeler (legal?)
- All vehicles observed 4-way stop okay-complete stops.
Post 4: Douglas Avenue and 2nd Street – DB
- Bicyclists – 2.
- Jogger - 1.
- Heavy traffic: 129 cars, 10 trucks and 2 tractors.
- All four crosswalks are marked. No signage. (Used to have one.)
- Students used the crosswalks and watched for traffic.
- 30 mph Douglas Avenue.

Post 5: Balmoral Avenue and 2nd Street – Donna Smith
- Walkers – 0.
- Bicyclists – 1.
- School bus at 3:26.

- Walkers – 0.
- Bicyclists – 0.

Post 7: Inman Street and State Highway 108 – Scott Grobe
- Walkers – 4.
- Bicyclists – 0.
- Kids crossing midblock to go to the store (2 older, 2 younger).

Post 8: Marshall and Fergus Avenues – Gina Ellingson
- Walkers – 0.
- Bicyclists – 3.
- The students are using good techniques when crossing the street.
Post 9: School Avenue and 2nd Street – Tammy Froemming
- Walkers – 85.
- Bicyclists – 6.
- Students run out of school in every direction.
- I saw one major issue; kids walked behind the last bus to walk home.
- Students did not use the crosswalks and the sidewalks.
- Vehicles seem to follow the speed limits.

Post 10: Inman Street and Hipple Avenue – Mike Helle
- Walkers – 0.
- Bicyclists: - 0.

Lunch Observations
Due to the fact that Henning has an open campus for its high school-aged students, it is common for these students to leave campus for lunch. They either walk home or buy lunch from the stores on Douglas Avenue. Since the SRTS team said that many students take advantage of this privilege to buy lunch downtown, an effort was made to witness this on Observation Day.

- Local weather at the Henning School:
 12:07 pm – 12:45 pm 48 °F. Drizzle Wind – Calm.
- Observations began at 12:07 pm and ended at 12:47 pm.

Post 1: Marshall Avenue-Tammy Froemming
- Walkers - 2.
- Bicyclists – 0
- Students walked through alleys but also seemed safe.
- 2 students came out of school and walked behind water treatment facility. Out on sidewalk of Marshall Avenue, turned right on Fergus. They came back the same way.

Post 2: School Avenue and 2nd Street – Jim
- Walkers – 51.
- Picked up by cars – 2.
- Walked across street not in crosswalk.
- Vehicle speeds were not a concern.
Post 3: Alley at Fergus Avenue – Andrew J. Besold

- Walkers - 44.
- Bicyclists - 0.
- Lots of diagonal street crossings and walking in the street (Fergus Avenue) but little vehicle traffic. Students walking through alleys which also seemed safe.
- Students did not use crosswalks.

Post 4: Douglas Avenue and 2nd Street – Donna Smith

- Walkers on 2nd Street – 4.
- Walkers in Alley – 22.
- Bicyclists – 0.
- Students used good techniques when crossing.
- Vehicles stopped for students crossing in crosswalk.
- A lot of truck traffic. Ottertail Aggregate trucks very fast.

Post 5: B & D Grocery – Scott Grobe

- Cars – 92.
- Trucks – 11.
- Students are crossing safely, looking for traffic.
- Vehicles stop for pedestrians.
- No crosswalks on Douglas Avenue in front of B & D but there are sidewalks.
- Traffic maintaining safe speeds.
TRAFFIC VOLUME DATA

While speed limits/traffic speed, street form (street width, number of lanes, lane width, presence of street trees, etc.) and the presence of sidewalks can have a great deal of impact on the safety of a street for pedestrians and bicyclists, traffic volume is also a very important factor. It goes without saying that streets with heavy traffic are often more dangerous for bicyclists and pedestrians due to increased exposure to potential conflicts. Traffic volumes are also the ultimate factor with regard to the stress experienced due to passing motor traffic while walking or biking. (No traffic, no stress.) Level of Traffic Stress (LTS) is a relatively new term in the active transportation field. It looks to replace or supplement the Level of Service (LOS) measure of facilitation for bicycles and pedestrians. High traffic stress environments can dissuade people from walking and biking despite the presence of facilities that have a high LOS. This report, however, does not attempt to measure LTS but provides traffic volumes to help understand current conditions and justify and prioritize future investments.

A common measure of traffic volume is “Annual Average Daily Traffic”, abbreviated AADT. According to MnDOT, AADT “is the theoretical estimate of the total number of vehicles using a specific segment of roadway (in both directions) on any given day of the year. This estimate represents the total number of cars per year divided by 365 and is developed using factors to adjust for season, day of the week, and vehicle type.” “Heavy Commercial Annual Average Daily Traffic” (HCAADT) is a subset of AADT measuring only heavy commercial truck traffic. MnDOT defines “Heavy Commercial Traffic” as “traffic from all trucks with at least 2 axles and 6 tires.” It is important to have a measure of HCAADT when available because heavy commercial vehicles are more cumbersome to operate and the increased mass of these vehicles is likely to cause more serious injuries and/or fatalities when involved in any type of crash. Heavy commercial traffic also has a greater impact on LTS per vehicle observed. Please

Figure 46: A truck full of sugar beets travels northbound on U.S. Highway 75 in Breckenridge. Very similar truck traffic is found in Henning.
note that both of these numbers can vary wildly depending on season due to factors such as tourism and harvest traffic.

Figures 47 and 48 are maps of the AADT and HCAADT, respectively, from data collected by MnDOT of the more significant roads in the immediate vicinity of the city of Henning. Tables 5 and 6 are a breakdown again of both AADT and HCAADT, (where available) respectively, on roads directly leading into and within urbanized Henning. MnDOT traffic volume data comes from the MnDOT Basemap (Available at: http://mndotgis.dot.state.mn.us/basemap/) and was accessed on May 22nd 2017.

Table 5: Annual Average Daily Traffic (AADT) for state system highways in and around Henning.

<table>
<thead>
<tr>
<th>Highway Name and Location</th>
<th>Annual Average Daily Traffic (AADT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Highway 210 east of State Highway 108 – Douglas Avenue.</td>
<td>1,600</td>
</tr>
<tr>
<td>State Highway 210 west of State Highway 108 – Douglas Avenue.</td>
<td>1,350</td>
</tr>
<tr>
<td>State Highway 108 – Douglas Avenue between Highway 210 and Inman Street.</td>
<td>1,150</td>
</tr>
<tr>
<td>State Highway 108 – Douglas Avenue west of Inman Street.</td>
<td>1,750</td>
</tr>
<tr>
<td>Inman Street north of State Highway 108 – Douglas Avenue.</td>
<td>1,050</td>
</tr>
<tr>
<td>Inman Street between Marshall Avenue and State Highway 108 – Douglas Avenue.</td>
<td>510</td>
</tr>
<tr>
<td>Marshall Avenue between State Highway 108 – Douglas Avenue and Inman Street.</td>
<td>540</td>
</tr>
<tr>
<td>Marshall Avenue between Inman Street and State Highway 210.</td>
<td>580</td>
</tr>
<tr>
<td>Marshall Avenue south of State Highway 210.</td>
<td>430</td>
</tr>
</tbody>
</table>
Figure 47: Henning Annual Average Daily Traffic (AADT) for state system highways.
Table 6: Heavy Commercial Annual Average Daily Traffic (HCAADT) on select highways in and around Henning.

<table>
<thead>
<tr>
<th>Highway Name and Location</th>
<th>Heavy Commercial AADT (HCAADT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Highway 210 east of State Highway 108 – Douglas Avenue.</td>
<td>180</td>
</tr>
<tr>
<td>State Highway 210 west of State Highway 108 – Douglas Avenue.</td>
<td>115</td>
</tr>
<tr>
<td>State Highway 108 – Douglas Avenue between Highway 210 and Inman Street.</td>
<td>80</td>
</tr>
<tr>
<td>State Highway 108 – Douglas Avenue west of Inman Street.</td>
<td>130</td>
</tr>
</tbody>
</table>
Figure 48: Henning Heavy Commercial Annual Average Daily Traffic (HCAADT) for state system highways.
CRASH DATA

Crash data from the study area, which includes all of the urbanized area of Henning and extends nearly a mile beyond in all four cardinal directions, was gathered using the online Minnesota Crash Mapping Analysis Tool. (MnCMAT) (http://www.dot.state.mn.us/stateaid/crashmapping.html) MnCMAT is MnDOT's crash database that includes all crashes involving a motor vehicle where a crash report was filed. It includes only crash reports from the past ten years. However, a crash involving a solo cyclist, the most common type of bicycle crash, would not be recorded even if emergency services responded because the crash did not involve a motor vehicle. The MnCMAT data for Henning was accessed, May 23rd 2017. As of that date, the dataset included crash reports from January 1st 2006 through December 31st 2015, all of which were included in this analysis. According to the MnCMAT homepage accessed on the date above, there has been a delay in updating the database with crash data from 2016. Typically, the lag time between crash occurrence and data entry into the MnCMAT database can last approximately 2-3 months with the data updated four times per year (approximately quarterly).

The staff at WCI felt that collecting crash data from the specified study area would provide the most utility. According to the MnCMAT data, there were a total of 52 crashes, none of which involved a bicyclist or a pedestrian. There were, however, three fatal crashes that killed four people. None of these happened within the urbanized Henning. (See Figure 49.)

Of the three fatal crashes, this is what could be gathered about circumstances from the information available on MnCMAT:

- On Sunday, July 8th 2007 at 03:52, a driver who was reported to have been drinking ran off the Airport Road about a quarter-mile south of State Highway 210, collided with the ditch and was killed. The speed limit at the time of the crash was 30 mph. No other people or vehicles were involved.
- On Sunday, July 18th 2007 at 02:59, a driver died after being involved in what was categorized as a “non-collision, other type”. This happened on State Highway 210 a few hundred feet north of Airport Road. The speed limit at the time of the incident was 55 mph. No other people or vehicles were involved.
- On Wednesday, September 11th 2013 at 18:40, two drivers were killed in a collision when one of the vehicles crossed the centerline and crashed head-on into the other. This happened on Douglas Avenue – State Highway 108, approximately a quarter-mile west of the intersection with Balmoral Avenue. The speed limit at the time of the incident was 55 mph. No other people or vehicles were involved.
Figure 49: Map of the 52 crash sites in and around Henning in the study area shown. There were no crashes involving a bicyclist or a pedestrian. However, there were three fatal crashes that killed four people.

Map auto-generated online by MnCMAT and then edited. Note that some dots represent crash multiple sites.
The severity classes and numbers of each severity class include three fatal crashes (that killed four people), one with incapacitating injuries, six with non-incapacitating injuries, eight with possible injuries, and 34 with property damage. (See Figure 50) Of the “Crash Types,” the vast majority were collisions with other motor vehicles in transport or parked vehicles, followed by collisions with deer. The rest are mostly collisions with fixed objects, with five rollovers and two “non-collision, other type”. (See Figure 51) From 2006 to 2015, the crash rate seemed to drop from a high of 12 in 2006 to just 2 in 2009. However, since 2009, the rate has hovered around three per year, with the highest around 6 and never getting lower than two collisions. (See Figure 52) There was a very sharp spike in crashes during the 15:00 hour; double that of any other hour. (See Figure 53) This 3:00 pm peak may correspond to student driver behaviors upon dismissal. Further evaluation of the crash data would need to be done to see if student drivers are the cause in this crash spike. It must be noted that a crash peak in the 15:00 hour has been seen in other communities where WCI has done SRTS plans. There were no crashes during the 04:00, 20:00 and 23:00 hours. Finally, there was a peak in crashes in July, which is not typical. Usually crashes rise in the winter months due to the poor street, light and weather conditions and drop off the rest of the year and maybe rise again during the peak summer tourist months. Besides the July peak, none of those rises is seen in the Henning data with crash rates rising and falling with no particular order or reason. (See Figure 54)

<table>
<thead>
<tr>
<th>Henning Crash Severity – Severity Class and Number</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Severity Class</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal</td>
<td>3</td>
</tr>
<tr>
<td>Incapacitating Injury</td>
<td>11</td>
</tr>
<tr>
<td>Non-Incapacitating Injury</td>
<td>6</td>
</tr>
<tr>
<td>Possible Injury</td>
<td>8</td>
</tr>
<tr>
<td>Property Damage</td>
<td>34</td>
</tr>
</tbody>
</table>

Figure 50: Henning Crash Severity - Severity Class and number of crashes in each class.

Graph automatically generated online by MnCMAT.
Figure 51: Henning Crash Type – Crash type and number of each crash type. Graph automatically generated online by MnCMAT.

Figure 52: Henning Crash Rate per Year. Graph automatically generated online by MnCMAT.
Figure 53: Henning crashes per hour of the day (24 hour time). Graph automatically generated online by MnCMAT.

Figure 54: Henning crashes per month of the year. Graph automatically generated online by MnCMAT.
NOTABLES AND CONCERNS

<table>
<thead>
<tr>
<th>Street or Intersection</th>
<th>Posted/Assumed Speed Limit</th>
<th>Conditions Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Wide</td>
<td>30/20</td>
<td>Henning, while small, has a dense, contiguous suburban form with an active downtown with industrial centers well positioned at the edges of the city.</td>
</tr>
<tr>
<td>Location of Henning School</td>
<td>30/20</td>
<td>Placement of the Henning School many years ago was very deliberate. Its location was intended to be the focus of the community as a source of civic pride but to also to maximize efficiency for the students walking and biking to school.</td>
</tr>
<tr>
<td>School Avenue and Marshall Avenue near Henning School</td>
<td>30 (20 School Zone)</td>
<td>While never overbearing, the morning arrival and afternoon dismissal procedures are less than ideal and could be made more orderly.</td>
</tr>
<tr>
<td>School Avenue and Marshall Avenue near Henning School</td>
<td>30 (20 School Zone)</td>
<td>Sidewalks around school are narrower than is preferable where large numbers of people alight and board from vehicles.</td>
</tr>
<tr>
<td>Parking lot across from Henning elementary entrance</td>
<td>n/a</td>
<td>This large lot is clearly underutilized. Paving with markings and curbs would maximize the number of spaces and help with traffic flow of those parking in the lot and with parents picking up students.</td>
</tr>
<tr>
<td>School Avenue and Marshall Avenue near Henning School</td>
<td>30 (20 School Zone)</td>
<td>Illegal and less than ideal parking observed on School Avenue across from the high school entrance which is impinging upon safety. Parking should be relocated to underutilized lot mentioned above.</td>
</tr>
<tr>
<td>School Avenue and Marshall Avenue near Henning School</td>
<td>30 (20 School Zone)</td>
<td>The positioning of the school buses during afternoon dismissal is less than ideal. Effort should be made to relocated some of the buses to the alley just east of the school so that all buses can pick up students while parked parallel to the curb.</td>
</tr>
<tr>
<td>School Avenue and Marshall Avenue near Henning School</td>
<td>30 (20 School Zone)</td>
<td>Because the six buses need to park at a 45 degree angle to the curb during afternoon pick-up, this has forced the city to make School Avenue exceptionally wide (54 feet) which is not conducive to pedestrian safety.</td>
</tr>
<tr>
<td>City Wide</td>
<td>30/20</td>
<td>Henning has been making investments to fix, replace and install new sidewalks as new concrete was seen all over town, including on Poulson Avenue, which never had sidewalks before.</td>
</tr>
<tr>
<td>2nd Street, Fergus Avenue, alley and Douglas Avenue</td>
<td>30/20</td>
<td>Nearly 50 students walk these streets and alley to go to the local stores on Douglas Avenue for lunch.</td>
</tr>
<tr>
<td>City Wide</td>
<td>30/20</td>
<td>Almost all residents within the urbanized area of Henning live within ½ mile of the Henning School as measured using the street network. The furthest residence measured was 0.6 miles away. As such, all students living within the urbanized area of Henning should be able to walk/bike to/from school.</td>
</tr>
<tr>
<td>City Wide</td>
<td>30/20</td>
<td>No street within the urbanized areas of Henning has a speed limit greater than 30 mph. Three are marked at 20 mph. Many residential streets a very narrow (24 feet) with no sidewalks.</td>
</tr>
<tr>
<td>City Wide</td>
<td>30/20</td>
<td>3:00 to 4:00 pm is the peak hour for crashes in Henning which may have a correlation to student driver behaviors upon dismissal. Further evaluation of the crash data would need to be done to see if student drivers are the cause in this crash spike.</td>
</tr>
<tr>
<td>Canadian Pacific Railroad</td>
<td>n/a</td>
<td>While railroads are often cited as a barrier to walking and biking to school, traffic in Henning is minimal with an average of 9 trains per day operating from Glenwood, Minnesota all the way up to the Canadian boarder (MnDOT 2015).</td>
</tr>
</tbody>
</table>
CHAPTER 7: COMMUNITY SRTS OPEN HOUSE EVENT

Due to a poor attendance record at previous SRTS Open House events in other communities, the team decided it may be more fruitful to go to the people instead of trying to get the people to come to us. As such, it was decided to have a table strategically-placed to intercept parents at all three parent-teacher conference events. On Tuesday, November 15 and Thursday, November 17, 2016, the author of this plan visited the Henning School to gather feedback from the community during elementary school student parent-teacher conferences. He again visited the school on Monday, December 12, 2016 during the high school student parent-teacher conferences. This proved to be a winning strategy as feedback comments were measured by the dozen instead of the single digits. The SRTS team was able to talk directly to and inform parents about the SRTS planning process, the upcoming parent survey and the importance of SRTS programs. Conversely, members of the community were able to meet some of the SRTS team, learn how SRTS works, and help envision what a more walkable, bikeable community could look like.

At the outreach events, WCI staff had a map of the city and numbered sticker dots and asked participants to put the dot at a location of a concern, problem or even something good; anything that could help the SRTS planning process. WCI staff recorded their comments in number order corresponding to the numbered dot. Effort was taken to separate the comments from parents of elementary students from those with students in the secondary and high school grades at the Henning School. Comments from members of the community are as follows and are not edited. They are not listed in any priority order. Figure 56 is a digital reproduction of the map created by the participants.
<table>
<thead>
<tr>
<th></th>
<th>Henning School: Elementary Parents SRTS Open House Comments</th>
<th>Yellow Pushpins, Figure 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marshall across from school gets lots of winter sports traffic at the sledding hill and ice rink.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lot of truck traffic on Douglas and it starts early in the morning; 4:30, 5:00 a.m.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Concern about suspicious behavior at “a location at” (paraphrased) 2nd and Fergus. My kids walk and I’m worried about them going past there.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Traffic going over 30 mph (speeding) on Inman Street at Ellenson Drive.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Needs sidewalk on this corner on Douglas between Milne and Marshall.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Traffic coming into town is still going 55 mph at this point on Douglas. Would be nice if traffic slowed down to 30 mph at Balmoral Ave intersection. Kids playing in park (6a and 6b.) Concerns about speeding past parks.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>People drive below the speed limit on Douglas. Lots of older people walking (Between 4th and Front).</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Intersection seems dangerous. Speeding on Inman here. Could use sidewalks on Hipple and School Avenues.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>My kids walk and my only concern is right in front of the school. Seems a little confusing. There needs to be some rules or something.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Crossing guards do a great job watching out for the kids as we drop off our child on our way to work</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>We don’t live in town but my husband and I are concerned abut a little girl who walks down this alley to school. Not the best parts of town.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Intersection at Douglas, Marshall and 4th is confusing and potentially dangerous.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Crosswalk at School Avenue and Inman Street could be made more conspicuous. Parent was driving north on Inman and went past a person walking a dog before she noticed them.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bus circulation in front of school at dismissal is dangerous. It was safer when buses were lined up in alley. Would be safer if buses lined up parallel to curb on School Avenue.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>My kids take the alley south of Poulson where we live and then Johnson to Lloyd because it has less traffic and we feel it’s safe.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Student/kids cross downtown Douglas without following the rules of the road.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Intersection of Inman and Marshall is dark and could use a street lamp.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Comment from student - Students cross from the alley at the bank to B and D Foods.</td>
<td></td>
</tr>
</tbody>
</table>
Figure 56: Henning Outreach Feedback: Points of Concern. Basemap Aerial Imagery via Google Maps.
CHAPTER 8: STANDARDIZED SRTS SURVEY ANALYSIS

A take-home, self-report parent survey and a teacher-administered in-class student travel tally were conducted in the winter and spring of 2016 - 2017. These surveys and survey documents have been designed by the National Centers for Safe Routes to School. (National Centers) http://www.saferoutesinfo.org/ These surveys and survey forms are the national standard for reporting SRTS data in the United States and help the National Centers keep track of walking and biking rates. Up until 2016, the National Centers’ guidelines had focused on gathering survey data on students in grades K-8 only. However, with the SRTS program expanding focus to include high schools, surveys are taken from schools that teach grades 9-12. Even though all the students attend school in one building, the students are divided in to an elementary school area and secondary / high school area. Since they function somewhat independently and parents’ opinions will likely change as students get older, it was decided to split the surveys between these two groups of Henning School students with separate results for each. It is always easier to combine results at a later time, if desired. The Henning School was divided into the two following groups:

- Henning elementary students (PreK – 5)
- Henning high school students (6 – 12)

The parent survey questionnaire is a two-page form that was taken home by students for parents to complete asking about their child’s school travel behaviors and the parents’ perceptions regarding whether walking and biking to school is appropriate and fitting for their child. Besides English, the parent survey is available from the National Centers in Spanish, Arabic, Armenian, Mandarin Chinese, Haitian Creole, Hmong, Korean, Russian, Somali, Ukrainian and Vietnamese. The parent survey can also be done by parents directly online if school administrators and SRTS believe that this will provide a greater survey return rate. (English and Spanish only) This also has the potential to increase survey response accuracy and save administrative time with data entry. The results provide valuable information about parental attitudes and opinions relevant to SRTS and create a benchmark baseline by which future analysis can be compared.

The student travel tally is administered by teachers and conducted over three days (Tuesday, Wednesday and Thursday) in one single school week throughout the entire school. Teachers record weather conditions on each day, in the morning and afternoon. Then the teachers ask about students’ travel modes to school each particular day and how they plan to return home. These, too, provide a benchmark baseline by which future analysis can be compared.
Once the paper forms were completed and collected for both surveys, the data is entered on-line into the National Centers’ database by staff at WCI. This is done to maintain data entry continuity and as a service to the school. After the survey data is entered, those with access to the National Centers’ database can produce automated individual reports from each school for both the parent survey and the student travel tally. These reports provide a breakdown of the basic statistics that first establish a baseline that progress can be measured against in the future. The reports generated by the National Centers are the origin of most of graphs and tables in this chapter. The 2016 / 2017 surveys will be used to establish baseline data for the two sets of students at the Henning School. Moving forward, the parent survey will be done once every two to three years and the teacher-administered student travel tally will be done at least once, but preferably twice per school year (fall and spring). Follow-up surveying, with help from WCI, will be done so that over time, local, state and national officials can monitor trends in the travel habits of students traveling to and from school.

This chapter only reproduces the most important survey results and provides some analysis.

PARENT SURVEY – SELECT QUESTIONS / KEY FINDINGS

For the complete parent survey results, see Appendix A.

PARENT SURVEY: HENNING SCHOOL - ELEMENTARY SCHOOL STUDENTS

Note! Only 16 questionnaires were completed and analyzed which is less than the 30 plus needed to make statistically significant conclusions. Also, two responses came from parents of children in 6th grade which is considered secondary / high school age. Since the survey was done on-line, these responses could not be separated and added to the secondary / high school students results and are included here by default.
Typical mode of arrival at and departure from school

Of the children whose parents participated in the survey, the breakdown of travel mode to and from school is as follows:

Table 7: Typical mode of arrival at and departure from school.

<table>
<thead>
<tr>
<th>Time of Trip</th>
<th>Number of Trips</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Afternoon</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

No Response Morning: 0
No Response Afternoon: 0
Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.

Figure 57: Typical mode of arrival at and departure from school.
There was a change in travel modes chosen for school departure compared to arrival. There was a switch from the family vehicle to the school bus. This is in keeping with what has been seen in other schools in the west central region of Minnesota. It is the belief of the author that this mode shift from the family vehicle happens in most communities and schools because it is easy for parents to drive children to school as they are headed to work. But in the afternoon, parents are at work when students are dismissed and students can take their time getting home. Even though no students were recorded riding their bike to the Henning School, it must be noted that bike mode share for students does not vary between morning and afternoons. It stands to reason that students will need to ride their bikes home if they wish to ride to school the next day.

When compared to the 2013 national SRTS combined walk and bike mode share numbers of 15.2 percent in the morning and 18.4 percent in the afternoon, the percentages of elementary students walking and bicycling to and from the Henning School (25 percent morning, 25 percent afternoon) would appear to be above average. However, conclusions with a measure of statistical confidence cannot be made with a sample size of only 12.

Parent estimate of distance from child's home to school

Parents were asked to give the distance from their home to the school. This question is asked in a way so that parents likely estimate that distance. These results are shown in Table 8. This is recorded because what parents estimate will have an effect on their mode choice for their child. Often parents will overestimate that distance and drive their child to school when walking and/or biking is a viable, safe and timely alternative.

Table 8: Parent estimate of distance from the child’s home to school.

<table>
<thead>
<tr>
<th>Distance between home and school</th>
<th>Number of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1/4 mile</td>
<td>5</td>
</tr>
<tr>
<td>1/4 mile up to 1/2 mile</td>
<td>2</td>
</tr>
<tr>
<td>1/2 mile up to 1 mile</td>
<td>0</td>
</tr>
<tr>
<td>1 mile up to 2 miles</td>
<td>1</td>
</tr>
<tr>
<td>More than 2 miles</td>
<td>4</td>
</tr>
</tbody>
</table>

Don’t know or No response: 0

Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Cross-reference – Distance, by arrival and departure modes

These estimated distances are then cross-referenced with actual arrival and departure mode choice. (Tables 9 and 10)

Table 9: Parent estimate of the distance from child’s home to school and mode choice to school.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number within Distance</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1/4 mile</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/4 mile up to 1/2 mile</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2 mile up to 1 mile</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 mile up to 2 miles</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>More than 2 miles</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Don’t know or No response: 0
Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.

Table 10: Parent estimate of the distance from child’s home to school and mode choice from school.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number within Distance</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1/4 mile</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/4 mile up to 1/2 mile</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2 mile up to 1 mile</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 mile up to 2 miles</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>More than 2 miles</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Don’t know or No response: 0
Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Additional WCI analysis: Mode analysis within the Walk / Bike Zone, arrival and departure

According to the MnDOT Walk / Bike Zone concept, one-half mile is considered an appropriate distance for students in grades PreK through Fifth to walk and/or bike to and from school. Since the elementary school students are in grades PreK – 5, for this analysis, all those living within a perceived one-half mile from the school would be considered to live within the appropriate Walk / Bike Zone for this grade group. Again, while conclusions with a measure of statistical confidence cannot be made due to the small sample size, it would appear that 43 percent of elementary-aged students are indeed walking (not biking) to school from the appropriate Walk / Bike Zone distances in Henning. (Tables 11, 12)

Table 11: School arrival modes for students (raw numbers and percentages)
 living within one mile of the Elementary/Middle School.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number within Distance</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than ¼ mile</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>¼ mile up to ½ mile</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total within ½ mile</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Walk / Bike within ½ mile</td>
<td></td>
<td>3 (43%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Motorized Modes within ½ mile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 (57%)</td>
</tr>
</tbody>
</table>

Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.

Table 12: School departure modes for students (raw numbers and percentages)
 living within one mile of the Elementary/Middle School.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number within Distance</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than ¼ mile</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>¼ mile up to ½ mile</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total within ½ mile</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Walk / Bike within ½ mile</td>
<td></td>
<td>3 (43%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Motorized Modes within ½ mile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 (57%)</td>
</tr>
</tbody>
</table>

Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
What of the following issues affected your decision to allow, or not allow, your child to walk or bike to/from school?

Parents were asked to identify issues affecting their decision to allow, or not allow, their child to walk or bike to and from school. Parents were given a list of options to choose from and the ability to select as many reasons they felt applied. The results from this question were then split by whether parents did allow their child to walk or bike to and from school, or did not.

Figure 58: Issues reported to affect the decision to not allow a child to walk or bike to/from school by parents of children who do not walk or bike to/from school.

Of the nine respondents that answered this question and their child does not walk or bike to school, the leading reasons are, “weather or climate,” “distance”, “sidewalks or pathways” followed by reasons all related to traffic safety, “crossing guards” and “adults to bike/walk with.” “Violence or crime” was not cited as a reason for not allowing a child to walk or bike to and from school.
Of the three respondents that answered this question and their child does walk or bike to school, all three cited “distance”, “sidewalks or pathways” and “safety of intersections” as reasons they allow their child to walk to school. Cited by just one of the three people were the following: “crossing guards”, “speed of traffic along route”, “amount of traffic along route” and “weather or climate.”
Note! Only 16 questionnaires were completed and analyzed which is less than the 30 plus needed to make statistically-significant conclusions. Also, three responses for the secondary / high school parent survey came from parents of children in elementary grades (one K, two from 2nd grade). Since the survey was done on-line, these responses could not be separated and were added to the elementary grades survey and are included here as a matter of default.

Typical mode of arrival at and departure from school

Of the children whose parents participated in the survey, the breakdown of travel mode to and from school is as follows:

Table 13: Typical mode of arrival at and departure from school.

<table>
<thead>
<tr>
<th>Time of Trip</th>
<th>Number of Trips</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>16</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Afternoon</td>
<td>16</td>
<td>6</td>
<td>0</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

No Response Morning: 0
No Response Afternoon: 0
Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
There is a change in travel modes chosen for school departure compared to arrival. There was an extreme switch from the family vehicle to the school bus in the afternoon. This is in keeping with what has been seen in other schools in the west central region of Minnesota but typically, not to this extent. This is likely a reflection of the small sample size of 16. Still, it is the belief of the author that this mode shift from the family vehicle happens in most communities and schools because it is easy for parents to drive children to school as they are headed to work while in the afternoon parents are at work when students are dismissed and students can take their time getting home. Even though no students were recorded riding their bike to the Henning School, it must be noted that bike mode share for students does not vary between morning and afternoons as it stands to reason that students will need to ride their bikes home if they wish to ride to school the next day.

When compared to the 2013 national SRTS combined walk and bike mode share numbers of 15.2 percent in the morning and 18.4 percent in the afternoon, the percentages of secondary/high school students walking and bicycling to and from the Henning School (38 percent morning, 38 percent afternoon) would appear to be above average. It should be noted, however, that the national numbers are for grades K-8 and conclusions with a measure of statistical confidence cannot be made with a sample size of only 16.
Parent estimate of distance from child’s home to school

Parents were asked to give the distance from their home to the school. This question is asked in a way so that parents likely estimate that distance. These results are shown in Table 14. This is recorded because what parents estimate will have an effect on their mode choice for their child. Often parents will overestimate that distance and drive their child to school when walking and/or biking is a viable, safe and timely alternative.

Table 14: Parent estimate of distance from the child’s home to school.

<table>
<thead>
<tr>
<th>Distance between home and school</th>
<th>Number of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1/4 mile</td>
<td>5</td>
</tr>
<tr>
<td>1/4 mile up to 1/2 mile</td>
<td>3</td>
</tr>
<tr>
<td>1/2 mile up to 1 mile</td>
<td>0</td>
</tr>
<tr>
<td>1 mile up to 2 miles</td>
<td>2</td>
</tr>
<tr>
<td>More than 2 miles</td>
<td>6</td>
</tr>
</tbody>
</table>

Don’t know or No response: 0

Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Cross-reference – Distance, by arrival and departure modes

These estimated distances are then cross-referenced with actual arrival and departure mode choice. (Tables 15 and 16)

Table 15: Parent estimate of the distance from child’s home to school and mode choice to school.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number within Distance</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1/4 mile</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/4 mile up to 1/2 mile</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2 mile up to 1 mile</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 mile up to 2 miles</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>More than 2 miles</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Don’t know or No response: 0
Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.

Table 16: Parent estimate of the distance from child’s home to school and mode choice from school.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number within Distance</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1/4 mile</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/4 mile up to 1/2 mile</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2 mile up to 1 mile</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 mile up to 2 miles</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>More than 2 miles</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Don’t know or No response: 0
Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Mode analysis within the Walk / Bike Zone, arrival and departure modes: Additional WCI analysis.

According to the MnDOT Walk / Bike Zone concept, the appropriate distance to walk and/or bike to and from school for students in grades Fifth through Eighth is one mile and for students in grades Ninth through Twelfth, it is one and a half miles. Since there is no way to parse the data between those living between those distances and only two respondents were said to live between one and two miles, it was decided for this analysis all those living within a perceived one mile from the school would be considered to live within the appropriate Walk / Bike Zone for secondary and high school aged students. Again, while conclusions with a measure of statistical confidence cannot be made due to the small sample size, it would appear that 75 percent of secondary and high school age students are indeed walking (not biking) to school from the appropriate Walk / Bike Zone distances in Henning. (Tables 17 and 18) If students living within two miles were considered in this analysis, another 2 students would be added to the motorized modes category. That would change the walk and bike percentage to 60 percent, motorized 40 percent for both arrival and dismissal.

Table 17: School arrival modes for students (raw numbers and percent) living within two miles of the high school.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number within Distance</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than ¼ mile</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>¼ mile up to ½ mile</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>½ mile up to 1 mile</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total within 1 mile</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Walk / Bike within 1 mile</td>
<td>6 (75%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Motorized Modes within 1 mile</td>
<td>2 (25%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Table 18: School departure modes for students (raw numbers and percent) living within two miles of the high school.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number within Distance</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than ¼ mile</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>¼ mile up to ½ mile</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>½ mile up to 1 mile</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total within 1 mile</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Walk / Bike within 1 mile</td>
<td>6 (75%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Motorized Modes within 1 mile</td>
<td>2 (25%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
What of the following issues affected your decision to allow, or not allow, your child to walk or bike to/from school?

Parents were asked to identify issues affecting their decision to allow, or not allow, their child to walk or bike to and from school. Parents were given a list of options to choose from, with the ability to select as many reasons they felt applied. The results from this question were then split by whether parents did allow their child to walk or bike to and from school, or did not.

Figure 61: Issues reported to affect the decision to not allow a child to walk or bike to/from school by parents of children who do not walk or bike to/from school.

Of the 9 respondents that answered this question and their child does not walk or bike to school, the three leading reasons to not allow a child to walk to school are “distance”, “amount of traffic along route”, and “weather or climate”. “Sidewalks or pathways”, “violence or crime” and “adults to bike with” were the least cited reasons.
Of the one respondent that answered this question and their child does walk or bike to school, the four reasons to allow a child to walk to school were “sidewalks or pathways”, “time”, “safety of intersections and crossings”, and “distance”.

STUDENT TRAVEL TALLY – SELECT QUESTIONS / KEY FINDINGS

For complete student travel tally results, see Appendix B.

The student travel tally is used to quantify students’ travel both to and from school by travel mode. The tally form is administered in school, by teachers. The count is administered school-wide in one single school week. Doing the tally on all three mid-week days (Tuesday, Wednesday and Thursday) is greatly preferred but two of three midweek days is acceptable. Monday and Friday are avoided as possible weekend plans and/or holidays are more likely to affect students’ regular travel behaviors on those two days. Students are asked, by a show of hands, how they arrived at school that day and then how they plan to leave for home after school. This survey also records weather conditions on each particular day, morning and afternoon separately, as inclement weather can have an obvious effect on children walking or biking to and from school.

Individual student travel tally counts for the elementary-age students and another for the secondary / high school age students were performed. These tallies will serve as baseline tallies with follow-up tallies conducted for each school group at least every year, if not two times per year.
STUDENT TRAVEL TALLY: HENNING SCHOOL – ELEMENTARY STUDENTS

Question – How did you arrive at school today? How do you plan to leave for home after school?

Travel mode results from the student travel tally match up fairly well with the travel mode results from the parent survey. However, there is a greater switch to walking in the afternoon and a weaker shift to the school bus from the family vehicle. This is more typical of what has been seen in other communities in west central Minnesota and is likely closer to the truth considering the larger sample size of the student tally. According to the tally, as seen in Figure 63, the combined rate of walking and biking to school in the morning was six percent (five percent walking, one percent biking). This combined rate then increased to 17 percent in the afternoon (15 percent walking, two percent biking). This is below the 2013 national SRTS combined walk and bike mode share of 15.2 percent in the morning and 18.4 percent in the afternoon when compared to the parent survey.

61 percent of the students rode the school bus in the morning and 63 percent in the afternoon, while 30 percent of the students took the family vehicle to school in the morning and 16 percent in the afternoon. There is also a small percentage using a car pool (three percent morning and afternoon) a fractional percent using transit in the afternoon. This mode shift towards the school bus, carpooling and walking in the afternoon is consistent with patterns seen at other schools. Greater use of a family vehicle in the morning is likely due to the convenience of dropping off students as parents go to work.
STUDENT TRAVEL TALLY:
HENNING SCHOOL – SECONDARY AND HIGH SCHOOL STUDENTS

Question – How did you arrive at school today? How do you plan to leave for home after school?

Note! Tally returns for students in the secondary and high school were less than ideal. While there were a total of 655 trips (morning and afternoon combined) recorded from the elementary students, there were only a combined 94 trips recorded for the secondary and high school students (50 morning, 44 afternoon). There were poor tally results from Tuesday and none taken on Wednesday. Ideally, tally results will come equally from all three midweek days, with two out of the three days being considered acceptable per classroom. A repeat tally for the secondary and high school age students is highly recommended in the fall of 2017.
Travel mode results from the student travel tally do NOT match up well with the travel mode results from the parent survey. Whereas, the parent survey showed a shift to the school bus in the afternoon, the tally shows a large switch to the family vehicle. This could be high school students with cars giving fellow students a ride home but this conclusion is mere speculation. There is also a drop in afternoon walk and bike rates which is unusual. Both of these unexpected results are likely explained by the poor compliance to tally rules. As such, further speculation about these tally results would be sheer conjecture.

However, if taken at face value, there is shown to be a great switch to the family vehicle from walking, biking and the school bus. This is far from typical of what has been seen in other communities in west central Minnesota. According to the tally, as seen in Figure 64, the combined rate of walking and biking to school in the morning was 24 percent (12 percent walking, 12 percent biking). This combined rate then decreased to a mere 9 percent in the afternoon (seven percent walking, two percent biking). These figures are on both sides of the 2013 national SRTS combined walk and bike mode share of 15.2 percent in the morning and 18.4 percent in the afternoon.

In conclusion, 28 percent of the students rode the school bus in the morning and 18 percent in the afternoon, while 48 percent of students took the family vehicle to school in the morning and a massive 73 percent in the afternoon. There was no use of a car pool, transit or other modes.
DISCUSSION / COMPARISON

For the elementary students at the Henning School, travel mode results from both survey instruments are somewhat comparable. However, due to the small sample size of 12 from the parent survey, the student travel tally with 655 recorded trips is more likely closer to the truth due to the larger sample size. However, mode trends are similar in both surveys, with a shift away from the family vehicle in the afternoon towards the school bus and walking (as seen in the tally). This is the pattern which has been seen by WCI staff at other schools in the west central region of Minnesota. But the shift from the family vehicle to the school bus was much more pronounced in the parent survey. Overall, the results from both the parent surveys and student travel tallies are comparable and did not contradict one another. If a larger number of responses from the parent survey were possible, it is likely that the travel mode results from the two survey instruments would have been more identical. Even still, the two survey instruments compliment each other rather well, and increase confidence in the validity of the results.
The same could not be said of the results of the secondary and high school students at the Henning School. The parent survey also had a small sample size of only 16 and the travel tally recorded only 94 trips (compared to the elementary 655). While the parent survey results seem to follow travel mode trends seen elsewhere, the tally results, with only 94 recorded trips, did not. The tally results show a massive swing to the family vehicle, a total contradiction to what is normally seen. However, this could be from high school students with cars giving rides to friends. Due to the poor returns for the secondary and high school students from both survey instruments, it is difficult to try and draw any further conclusions.

When compared to the 2013 national SRTS combined walk and bike mode share numbers of 15.2 percent in the morning and 18.4 percent in the afternoon, the percentages of elementary students who walk and bicycle to and from the Henning School, using the student travel tally results (6 percent morning, 17 percent afternoon) remain below average. But the secondary / high school students tally results (24 percent morning, 9 percent afternoon) are on both sides of the average.

However, studying both sets of parent survey data and looking only at those students who live within the appropriate Walk / Bike Zones as per grade, we see a very respectable 60 percent (approximate) of Henning School students who walk and bike in the morning and afternoon.

While the results from the parent surveys and student travel tallies provide valuable baseline data, several limitations exist. The parent survey was self-reported information, which may self-select and bias the results to a socially-desirable response. Furthermore, the three-day time frame for student travel tallies, taken only during one school week out of the entire year, limits the likelihood of collecting data in all weather conditions. Additional analysis, particularly a second student travel tally at a different time of the year, would be helpful to better understand student travel behaviors and how the weather influences travel mode decisions.
For a comprehensive set of recommendations, please see the “Action Plan” in the “Executive Summary, Significant Findings and Action Plan” at the beginning of this document.
CHAPTER 10: CONCLUSION

This Safe Routes to School (SRTS) plan is intended to guide the City of Henning and the Henning Independent School District #545, towards their collective goal of making it safer, more convenient and more fun for students to walk and bicycle to and from school. Where it is already safe, encourage students to walk and bicycle to school. Where it is less than ideally safe, improve the existing conditions to make it as safe as practically possible, with an eye toward walking and bicycling comfort. When children get exercise on their way to and from school they:

- Arrive more alert and able to focus,
- Get a large portion of their recommended daily physical activity,
- Are more likely to be a healthy weight,
- Demonstrate improved test scores,
- Are less likely to suffer from anxiety, and
- Build healthy habits and practices they can bring with them into adulthood.

The SRTS recommendations in the Action Plan at the beginning of this document address the “5 Es” and recognize the “6th E” of Equity. They were created to improve safety, reduce traffic congestion, encourage students to consider walking or bicycling, and instill an active lifestyle. The recommendations in this plan were formed based on expert analysis of the existing conditions around the school and in the community, direct observation, input from members of the community, MnDOT assembled crash and traffic data, and results from standardized parent surveys and student travel tallies. SRTS plans are the most successful when programs involve the entire community and when they are integrated into current and future policies. If at any time, the City of Henning and the Henning Independent School District #545 have any questions of how to best enact the recommendations in this report, whether that be funding sources, best policies and practices, etc., they are encouraged to contact the staff at West Central Initiative and/or PartnerSHIP 4 Health.
HENNING SCHOOL – ELEMENTARY GRADES

Parent Survey Report: One School in One Data Collection Period

School Name: Henning Elementary School
Set ID: 15682

School Group: West Central Minnesota / MnDOT D4
Month and Year Collected: Dec. 2016

School Enrollment: 0
Date Report Generated: 04/18/2017

% Range of Students Involved in SRTS: Don’t know
Tags:

Number of Questionnaires Distributed: 0
Number of Questionnaires Analyzed for Report: 12

This report contains information from parents about their children's trip to and from school. The report also reflects parents' perceptions regarding whether walking and bicycling to school is appropriate for their child. The data used in this report were collected using the Survey about Walking and Biking to School for Parents form from the National Center for Safe Routes to School.

Because less than 30 questionnaires are included in this report, each graph and table display counts rather than percentage information.
Grade levels of children represented in survey

Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Parent estimate of distance from child's home to school

<table>
<thead>
<tr>
<th>Distance between home and school</th>
<th>Number of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1/4 mile</td>
<td>5</td>
</tr>
<tr>
<td>1/4 mile up to 1/2 mile</td>
<td>2</td>
</tr>
<tr>
<td>1/2 mile up to 1 mile</td>
<td>0</td>
</tr>
<tr>
<td>1 mile up to 2 miles</td>
<td>1</td>
</tr>
<tr>
<td>More than 2 miles</td>
<td>4</td>
</tr>
</tbody>
</table>

Don't know or No response: 0

Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Typical mode of arrival at and departure from school

![Bar chart showing typical mode of arrival and departure from school]

Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.

<table>
<thead>
<tr>
<th>Time of Trip</th>
<th>Number of Trips</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Afternoon</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

No Response Morning: 0
No Response Afternoon: 0
Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Typical mode of school arrival and departure by distance child lives from school
Typical mode of school arrival and departure by distance child lives from school

School Arrival

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number within Distance</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1/4 mile</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/4 mile up to 1/2 mile</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2 mile up to 1 mile</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 mile up to 2 miles</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>More than 2 miles</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Don’t know or No response: 0
Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.

School Departure

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number within Distance</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1/4 mile</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/4 mile up to 1/2 mile</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2 mile up to 1 mile</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 mile up to 2 miles</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>More than 2 miles</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Don’t know or No response: 0
Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Number of children who have asked for permission to walk or bike to/from school by distance they live from school

<table>
<thead>
<tr>
<th>Asked Permission?</th>
<th>Number of Children</th>
<th>Less than 1/4 mile</th>
<th>1/4 mile up to 1/2 mile</th>
<th>1/2 mile up to 1 mile</th>
<th>1 mile up to 2 miles</th>
<th>More than 2 miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Don’t know or No response: 0
Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Issues reported to affect the decision to not allow a child to walk or bike to/from school by parents of children who do not walk or bike to/from school:

- Child’s Participation in After School Programs
- Violence or Crime
- Time
- Adults to Bike/Walk With
- Convenience of Driving
- Crossing Guards
- Safety of Intersections and Crossings
- Speed of Traffic Along Route
- Amount of Traffic Along Route
- Sidewalks or Pathways
- Distance
- Weather or climate

Issues reported to affect the decision to allow a child to walk or bike to/from school by parents of children who already walk or bike to/from school:

- Child’s Participation in After School Programs
- Violence or Crime
- Time
- Adults to Bike/Walk With
- Convenience of Driving
- Crossing Guards
- Safety of Intersections and Crossings
- Speed of Traffic Along Route
- Amount of Traffic Along Route
- Sidewalks or Pathways
- Distance
- Weather or climate
Issues reported to affect the decision to allow a child to walk or bike to/from school by parents of children who already walk or bike to/from school

<table>
<thead>
<tr>
<th>Issue</th>
<th>Child does not walk/bike to school</th>
<th>Child walks/bikes to school</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather or climate</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Distance</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Sidewalks or Pathways</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Amount of Traffic Along Route</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Speed of Traffic Along Route</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Safety of Intersections and Crossings</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Crossing Guards</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Convenience of Driving</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Adults to Bike/Walk With</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Time</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Violence or Crime</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Child’s Participation in After School Programs</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Number of Respondents per Category

| | 9 | 3 |

No response: 0

Note:
---Factors are listed from most to least influential for the 'Child does not walk/bike to school' group.
Parents' opinions about how much their child's school encourages or discourages walking and biking to/from school by percent

<table>
<thead>
<tr>
<th>Level of support</th>
<th>Number of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Encourages</td>
<td>0</td>
</tr>
<tr>
<td>Encourages</td>
<td>1</td>
</tr>
<tr>
<td>Neither</td>
<td>11</td>
</tr>
<tr>
<td>Discourages</td>
<td>0</td>
</tr>
<tr>
<td>Strongly Discourages</td>
<td>0</td>
</tr>
</tbody>
</table>

Parents' opinions about how much fun walking and biking to/from school is for their child by percent

<table>
<thead>
<tr>
<th>Level of fun</th>
<th>Number of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Fun</td>
<td>4</td>
</tr>
<tr>
<td>Fun</td>
<td>1</td>
</tr>
<tr>
<td>Neutral</td>
<td>6</td>
</tr>
<tr>
<td>Boring</td>
<td>0</td>
</tr>
<tr>
<td>Very Boring</td>
<td>0</td>
</tr>
</tbody>
</table>
Parents' opinions about how healthy walking and biking to/from school is for their child by percent

<table>
<thead>
<tr>
<th>How healthy</th>
<th>Number of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Healthy</td>
<td>5</td>
</tr>
<tr>
<td>Healthy</td>
<td>3</td>
</tr>
<tr>
<td>Neutral</td>
<td>3</td>
</tr>
<tr>
<td>Unhealthy</td>
<td>0</td>
</tr>
<tr>
<td>Very Unhealthy</td>
<td>0</td>
</tr>
<tr>
<td>Survey ID</td>
<td>Comment</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>1504335</td>
<td>I wish more kids would walk and am baffled by the bus dropping kids off when they live 4 blocks away and are old enough to walk home safely.</td>
</tr>
<tr>
<td>1505312</td>
<td>I am glad the school has received this grant and hope to see improvements made to the safety around the school. I would love to allow my children to ride their bikes to school! Currently, I worry about teen drivers in the area, kids crossing streets at random spots, cars pulling in and out among buses, and the crosswalk's location in combination with the parking lot. Even as a parent dropping off my children, I struggle with these issues and the confusion of dropping off.</td>
</tr>
<tr>
<td>1503117</td>
<td>We would also be comfortable letting our child walk/bike to school at a younger age (prior to 5th grade) if he had a friend with whom he could walk.</td>
</tr>
<tr>
<td>1503218</td>
<td>We live in the country so my kids don't really have this option.</td>
</tr>
</tbody>
</table>
This report contains information from your school's classrooms about students' trip to and from school. The data used in this report were collected using the in-class Student Travel Tally questionnaire from the National Center for Safe Routes to School.
Grade levels of children represented in survey

<table>
<thead>
<tr>
<th>Grade in School</th>
<th>Responses per grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

No response: 0

Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Parent estimate of distance from child's home to school

![Bar chart showing distances]

<table>
<thead>
<tr>
<th>Distance between home and school</th>
<th>Number of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1/4 mile</td>
<td>5</td>
</tr>
<tr>
<td>1/4 mile up to 1/2 mile</td>
<td>3</td>
</tr>
<tr>
<td>1/2 mile up to 1 mile</td>
<td>0</td>
</tr>
<tr>
<td>1 mile up to 2 miles</td>
<td>2</td>
</tr>
<tr>
<td>More than 2 miles</td>
<td>6</td>
</tr>
</tbody>
</table>

Don't know or No response: 0

Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Typical mode of arrival at and departure from school

![Bar chart showing the number of children arriving at school by mode of transportation for the morning and afternoon.

<table>
<thead>
<tr>
<th>Time of Trip</th>
<th>Number of Trips</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>16</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Afternoon</td>
<td>16</td>
<td>6</td>
<td>0</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

No Response Morning: 0
No Response Afternoon: 0
Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Typical mode of school arrival and departure by distance child lives from school
Typical mode of school arrival and departure by distance child lives from school

School Arrival

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number within Distance</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1/4 mile</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/4 mile up to 1/2 mile</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2 mile up to 1 mile</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 mile up to 2 miles</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>More than 2 miles</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Don’t know or No response: 0

Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.

School Departure

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number within Distance</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1/4 mile</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/4 mile up to 1/2 mile</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2 mile up to 1 mile</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 mile up to 2 miles</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>More than 2 miles</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Don’t know or No response: 0

Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Number of children who have asked for permission to walk or bike to/from school by distance they live from school

<table>
<thead>
<tr>
<th>Asked Permission?</th>
<th>Number of Children</th>
<th>Less than 1/4 mile</th>
<th>1/4 mile up to 1/2 mile</th>
<th>1/2 mile up to 1 mile</th>
<th>1 mile up to 2 miles</th>
<th>More than 2 miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Don't know or No response: 0
Numbers rather than percentages are displayed because the number of respondents for this question was less than 30.
Issues reported to affect the decision to not allow a child to walk or bike to/from school by parents of children who do not walk or bike to/from school

![Graph showing issues]

Issues reported to affect the decision to allow a child to walk or bike to/from school by parents of children who already walk or bike to/from school

![Graph showing issues]
Issues reported to affect the decision to allow a child to walk or bike to/from school by parents of children who already walk or bike to/from school

<table>
<thead>
<tr>
<th>Issue</th>
<th>Child does not walk/bike to school</th>
<th>Child walks/bikes to school</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Amount of Traffic Along Route</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Weather or climate</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Safety of Intersections and Crossings</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Speed of Traffic Along Route</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Time</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Child’s Participation in After School Programs</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Convenience of Driving</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Crossing Guards</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Adults to Bike/Walk With</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Violence or Crime</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Sidewalks or Pathways</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Number of Respondents per Category</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

No response: 6

Note:

--Factors are listed from most to least influential for the 'Child does not walk/bike to school' group.
Parents’ opinions about how much their child’s school encourages or discourages walking and biking to/from school

<table>
<thead>
<tr>
<th>Level of support</th>
<th>Number of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Encourages</td>
<td>0</td>
</tr>
<tr>
<td>Encourages</td>
<td>2</td>
</tr>
<tr>
<td>Neither</td>
<td>13</td>
</tr>
<tr>
<td>Discourages</td>
<td>0</td>
</tr>
<tr>
<td>Strongly Discourages</td>
<td>0</td>
</tr>
</tbody>
</table>

Parents’ opinions about how much fun walking and biking to/from school is for their child

<table>
<thead>
<tr>
<th>Level of fun</th>
<th>Number of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Fun</td>
<td>1</td>
</tr>
<tr>
<td>Fun</td>
<td>2</td>
</tr>
<tr>
<td>Neutral</td>
<td>12</td>
</tr>
<tr>
<td>Boring</td>
<td>1</td>
</tr>
<tr>
<td>Very Boring</td>
<td>0</td>
</tr>
</tbody>
</table>
Parents' opinions about how healthy walking and biking to/from school is for their child

<table>
<thead>
<tr>
<th>How healthy</th>
<th>Number of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Healthy</td>
<td>8</td>
</tr>
<tr>
<td>Healthy</td>
<td>7</td>
</tr>
<tr>
<td>Neutral</td>
<td>1</td>
</tr>
<tr>
<td>Unhealthy</td>
<td>0</td>
</tr>
<tr>
<td>Very Unhealthy</td>
<td>0</td>
</tr>
<tr>
<td>Survey ID</td>
<td>Comment</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>1503090</td>
<td>Henning is in great need of moving the buses off the street when loading students, there is an available alley that the students could be loading into the buses. Dropping off students, the arms of the buses should be out and their flashers should be on, THEY ARE UNLOADING STUDENTS and are stopped temporarily. If the road can not be shut down, the buses should be moved to the alley.</td>
</tr>
<tr>
<td>1504549</td>
<td>If there were a walking/biking path that my child could get on that went into town, I may consider allowing them to ride bike or walk. However, I will not let them ride bike or walk on a state highway.</td>
</tr>
<tr>
<td>1501664</td>
<td>Hwy 108 is issue with fast moving traffic as it enters town.</td>
</tr>
<tr>
<td>1501790</td>
<td>We lived across the highway several years ago. I would not allow a child younger than fifth or sixth grade to cross the town's main street/Hwy 108/Douglas Ave without an adult present due to the higher speeds of local big rig traffic during the mornings/afternoons. We have since moved to the near side of the highway, so have few concerns with kids walking/biking to school.</td>
</tr>
<tr>
<td>1504626</td>
<td>If we weren't outside of town on a highway, we would let him ride his bike to school. He would love to ride his bike! He rides it at home and walks too.</td>
</tr>
</tbody>
</table>
APPENDIX B: STUDENT TRAVEL TALLY RESULTS

HENNING SCHOOL – ELEMENTARY GRADES

Student Travel Tally Report: One School in One Data Collection Period

School Name: Henning Elementary School
Set ID: 23272

School Group: West Central Minnesota / MnDOT D4
Month and Year Collected: May 2017

School Enrollment: 275
Date Report Generated: 06/13/2017

% of Students reached by SRTS activities: Don’t Know
Tags: SRTS Planning Team

Number of Classrooms Included in Report: 15

This report contains information from your school's classrooms about students' trip to and from school. The data used in this report were collected using the in-class Student Travel Tally questionnaire from the National Center for Safe Routes to School.
Morning and Afternoon Travel Mode Comparison

<table>
<thead>
<tr>
<th></th>
<th>Number of Trips</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>330</td>
<td>5%</td>
<td>0.9%</td>
<td>61%</td>
<td>30%</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Afternoon</td>
<td>325</td>
<td>15%</td>
<td>2%</td>
<td>63%</td>
<td>16%</td>
<td>3%</td>
<td>0.6%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Percentages may not total 100% due to rounding.
Morning and Afternoon Travel Mode Comparison by Day

Percentages may not total 100% due to rounding.

<table>
<thead>
<tr>
<th></th>
<th>Number of Trips</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday AM</td>
<td>32</td>
<td>6%</td>
<td>0%</td>
<td>50%</td>
<td>38%</td>
<td>6%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Tuesday PM</td>
<td>28</td>
<td>14%</td>
<td>0%</td>
<td>79%</td>
<td>7%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Wednesday AM</td>
<td>52</td>
<td>4%</td>
<td>2%</td>
<td>56%</td>
<td>33%</td>
<td>6%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Wednesday PM</td>
<td>51</td>
<td>6%</td>
<td>2%</td>
<td>84%</td>
<td>6%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Thursday AM</td>
<td>246</td>
<td>5%</td>
<td>0.8%</td>
<td>63%</td>
<td>28%</td>
<td>2%</td>
<td>0%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Thursday PM</td>
<td>246</td>
<td>17%</td>
<td>2%</td>
<td>57%</td>
<td>19%</td>
<td>4%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Page 162 | Appendix B: Student Travel Tally Results
Travel Mode by Weather Conditions

<table>
<thead>
<tr>
<th>Weather Condition</th>
<th>Number of Trips</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>495</td>
<td>11%</td>
<td>1%</td>
<td>61%</td>
<td>23%</td>
<td>3%</td>
<td>0.4%</td>
<td>0%</td>
</tr>
<tr>
<td>Rainy</td>
<td>16</td>
<td>0%</td>
<td>0%</td>
<td>31%</td>
<td>56%</td>
<td>13%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Overcast</td>
<td>128</td>
<td>9%</td>
<td>0.8%</td>
<td>70%</td>
<td>19%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Snow</td>
<td>16</td>
<td>13%</td>
<td>0%</td>
<td>75%</td>
<td>6%</td>
<td>6%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Percentages may not total 100% due to rounding.
Henning School – Secondary and High School Grades

Student Travel Tally Report: One School in One Data Collection Period

- **School Name:** Henning Secondary
- **Set ID:** 23273
- **School Group:** West Central Minnesota / MnDOT D4
- **Month and Year Collected:** May 2017
- **School Enrollment:** 75
- **Date Report Generated:** 06/13/2017
- **% of Students reached by SRTS activities:** Don’t Know
- **Tags:** SRTS Planning Team
- **Number of Classrooms Included in Report:** 8

This report contains information from your school's classrooms about students' trip to and from school. The data used in this report were collected using the in-class Student Travel Tally questionnaire from the National Center for Safe Routes to School.
Morning and Afternoon Travel Mode Comparison

Percentages may not total 100% due to rounding.
Morning and Afternoon Travel Mode Comparison by Day

<table>
<thead>
<tr>
<th></th>
<th>Number of Trips</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday AM</td>
<td>9</td>
<td>0%</td>
<td>56%</td>
<td>22%</td>
<td>22%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Tuesday PM</td>
<td>3</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Wednesday AM</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Wednesday PM</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Thursday AM</td>
<td>41</td>
<td>15%</td>
<td>2%</td>
<td>29%</td>
<td>54%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Thursday PM</td>
<td>41</td>
<td>7%</td>
<td>2%</td>
<td>17%</td>
<td>73%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Percentages may not total 100% due to rounding.
Travel Mode by Weather Conditions

<table>
<thead>
<tr>
<th>Weather Condition</th>
<th>Number of Trips</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>73</td>
<td>11%</td>
<td>1%</td>
<td>27%</td>
<td>60%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Rainy</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Overcast</td>
<td>6</td>
<td>0%</td>
<td>83%</td>
<td>17%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Snow</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Percentages may not total 100% due to rounding.
Parent Survey About Walking and Biking to School

Dear Parent or Caregiver,

Your child’s school wants to learn your thoughts about children walking and biking to school. This survey will take about 5 - 10 minutes to complete. We ask that each family complete only one survey per school your children attend. If more than one child from a school brings a survey home, please fill out the survey for the child with the next birthday from today's date.

After you have completed this survey, send it back to the school with your child or give it to the teacher. Your responses will be kept confidential and neither your name nor your child’s name will be associated with any results.

Thank you for participating in this survey!

CAPITAL LETTERS ONLY – BLUE OR BLACK INK ONLY

School Name:

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
</table>

1. What is the grade of the child who brought home this survey?
 - Grade (PK, K, 1, 2, 3...)

2. Is the child who brought home this survey male or female?
 - Male
 - Female

3. How many children do you have in Kindergarten through 8th grade?
 - []

4. What is the street intersection nearest your home? (Provide the names of two intersecting streets)

 and

5. How far does your child live from school?
 - Less than ¼ mile
 - ¼ mile to ½ mile
 - ½ mile to 1 mile
 - More than 2 miles
 - Don’t know

6. On most days, how does your child arrive and leave for school? (Select one choice per column, mark box with X)

 Arrive at school
 - Walk
 - Bike
 - School Bus
 - Family vehicle (only children in your family)
 - Carpool (Children from other families)
 - Transit (city bus, subway, etc.)
 - Other (skateboard, scooter, inline skates, etc.)

 Leave from school
 - Walk
 - Bike
 - School Bus
 - Family vehicle (only children in your family)
 - Carpool (Children from other families)
 - Transit (city bus, subway, etc.)
 - Other (skateboard, scooter, inline skates, etc.)

7. How long does it normally take your child to get to/from school? (Select one choice per column, mark box with X)

 Travel time to school
 - Less than 5 minutes
 - 5 – 10 minutes
 - 11 – 20 minutes
 - More than 20 minutes
 - Don’t know / Not sure

 Travel time from school
 - Less than 5 minutes
 - 5 – 10 minutes
 - 11 – 20 minutes
 - More than 20 minutes
 - Don’t know / Not sure
Appendix C: Data Collection Instruments | Page 169

A high-quality and text readable original version of this document can be found at:
http://www.saferoutesinfo.org/sites/default/files/resources/Parent_Survey_English.pdf
Encuesta sobre ir caminando o andando en bicicleta a la escuela - PARA PADRES -

Estimado Padre o Encargado,

La escuela donde su hijo/hija asiste desea saber sus opiniones sobre niños caminando y andando en bicicleta a la escuela. Esta encuesta tomará entre 5 y 10 minutos para completar. Le pedimos a las familias que completen sólo una encuesta por escuela a la que asisten sus niños. Si recibe más de un formulario de la misma escuela, por favor complete solo una encuesta, la del niño que cumpla años en la fecha más próxima al día de hoy.

Después de completar esta encuesta, devuélvala a la escuela a través de su hijo o entréguesela a la maestra. Sus respuestas se mantendrán confidenciales y no se associará su nombre ni el de su hijo a ningún resultado.

¡Gracias por participar en esta encuesta!

LETRA MAYUSCULA SOLAMENTE USE TINTA AZUL O NEGRA

<table>
<thead>
<tr>
<th>Nombre de la Escuela:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. ¿En qué grado está el niño que trajo esta encuesta al hogar? □ Grado (PK, 1, 2, 3...)

2. ¿El niño que trajo a casa la encuesta es niño o niña? □ Niño □ Niña

3. ¿Cuántos niños tiene usted entre Kindergarten y el 8vo grado? □

4. ¿Cuál es la Intersección más cerca de su casa? (el cruce de las dos calles)

| |
|-----------------------|---|
| |

5. ¿Cuán lejos vive su niño de la escuela?
 - Menos de 1/4 milla □
 - Entre 1/4 y 1/2 milla □
 - Entre 1 y 2 millas □
 - Más de 2 millas □
 - No lo sé □

6. ¿La mayoría de los días, cómo va su niño a la escuela y cómo regresa a la casa después de la escuela?
 Llega a la escuela
 - Caminando □
 - Bicicleta □
 - Autobús escolar □
 - Vehículo de la familia (solo con niños de la familia) □
 - Compartiendo el viaje en auto con niños de otras familias □
 - Tránsito (autobús de la ciudad, subterráneo, etc.) □
 - Otro (patineta, monopatin, patines, etc.) □

 Regresa a casa
 - Caminando □
 - Bicicleta □
 - Autobús escolar □
 - Vehículo de la familia (solo con niños de la familia) □
 - Compartiendo el viaje en auto con niños de otras familias □
 - Tránsito (autobús de la ciudad, subterráneo, etc.) □
 - Otro (patineta, monopatin, patines, etc.) □

7. ¿Cuánto tiempo le toma a su niño para ir y regresar de la escuela? (una respuesta por columna con una "X" en la caja)
 Tiempo del recorrido a la escuela
 - Menos de 5 minutos □
 - 5 a 10 minutos □
 - 11 a 20 minutos □
 - Más de 20 minutos □
 - No lo sé / No estoy seguro/a □

 Tiempo del recorrido para llegar a casa
 - Menos de 5 minutos □
 - 5 a 10 minutos □
 - 11 a 20 minutos □
 - Más de 20 minutos □
 - No lo sé / No estoy seguro/a □
8. ¿En el último año, le ha pedido permiso su hijo para caminar o andar en bicicleta hacia o desde la escuela?
☐ Sí ☐ No

9. ¿En qué grado permitiría que su hijo camine o ande en bicicleta solo a/o de la escuela?
(se elija una respuesta por línea)
☐ grados ☐ No me sentiría cómodo/a en ningún grado

10. ¿Cuáles de las siguientes situaciones afectaron su decisión de permitir, o no permitir, que su niño camine o ande en bicicleta hacia o desde la escuela? (marque todas las que correspondan)
- Sí ☐ No ☐ No estoy seguro/a

11. ¿Probablemente dejaría que su hijo caminara o usara la bicicleta para ir a /regresar de la escuela si este problema cambiara o mejorara? (elige una respuesta por línea)

12. En su opinión, ¿cuánto apoyo prové la escuela de su hijo a caminar y usar la bicicleta para ir o regresar de la escuela?
- Anima Fuertemente ☐ Anima ☐ Ni uno ni otro ☐ Desalienta ☐ Desalienta Fuertemente

13. ¿Qué tan DIVERTIDO es caminar o andar en bicicleta hacia o desde la escuela para su niño?
- Muy Divertido ☐ Divertido ☐ Neutral ☐ Aburrido ☐ Muy Aburrido

14. ¿Qué tan SANO es caminar o andar en bicicleta hacia o desde la escuela para su niño?
- Muy Sano ☐ Sano ☐ Neutral ☐ Malsano ☐ Muy Malsano

15. ¿Cuál es el grado o el año más alto de educación que usted terminó?
- Grados 1 a 8 (Escuela primaria) ☐ Grados 9 a 11 (alguna High School/secundaria) ☐ Grado 12 o GED (graduado High School/secundaria)
- Universidad 1 a 3 años (alguna universidad o escuela técnica) ☐ Universidad 4 años o más (graduado de la universidad) ☐ Prefiero no contestar

16. Por favor proporcione comentarios adicionales:

A high-quality and text readable original version of this document can be found at:
http://www.saferoutesinfo.org/sites/default/files/resources/Parent_Survey_Spanish.pdf
STUDENT TRAVEL TALLY

Safe Routes to School Students Arrival and Departure Tally Sheet

<table>
<thead>
<tr>
<th>+</th>
<th>CAPITAL LETTERS ONLY – BLUE OR BLACK INK ONLY +</th>
</tr>
</thead>
<tbody>
<tr>
<td>School Name:</td>
<td>Teacher’s First Name:</td>
</tr>
<tr>
<td></td>
<td>Teacher’s Last Name:</td>
</tr>
<tr>
<td>Grade: (0,1,2,3,...)</td>
<td>Monday’s Date (Week count was conducted):</td>
</tr>
<tr>
<td></td>
<td>Number of Students Enrolled in Class:</td>
</tr>
<tr>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>H M D D Y Y Y Y 1 5</td>
<td></td>
</tr>
</tbody>
</table>

- Please conduct these counts on **two** of the following three days Tuesday, Wednesday, or Thursday. (Three days would provide better data if counted)
- Please do not conduct these counts on Mondays or Fridays.
- Before asking your students to raise their hands, please read through all possible answer choices so they will know their choices. Each student may only answer once.
- Ask your students as a group the question "How did you arrive at school today?"
- Then, re-read each answer choice and record the number of students that raised their hands for each. **Place just one character or number in each box.**
- Follow the same procedure for the question “How do you plan to leave for home after school?”
- You can conduct the counts once per day but during the count please ask students both the school arrival and departure questions.
- Please conduct this count regardless of weather conditions (i.e., ask these questions on rainy days, too).

Step 1.
Fill in the weather conditions and number of students in each class

<table>
<thead>
<tr>
<th>Key</th>
<th>Weather</th>
<th>Student Tally</th>
<th>Walk</th>
<th>Bike</th>
<th>School Bus</th>
<th>Family Vehicle</th>
<th>Carpool</th>
<th>Transit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>sunny</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Only with children from your family</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N</td>
<td>rainy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Riding with children from other families</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>overcast</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>City bus, subway, etc.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SN</td>
<td>snow</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Skate-board, scooter, etc.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample AM
- S N 2 0 2 3 8 3 3 1

Sample PM
- R 1 9 3 3 8 1 2 2

Tues. AM

Tues. PM

Wed. AM

Wed. PM

Thurs. AM

Thurs. PM

Please list any disruptions to these counts or any unusual travel conditions to/from the school on the days of the tally.

A high-quality and text readable original version of this document can be found at:

Page 172 | Appendix C: Data Collection Instruments
Promoting Health in Minnesota Schools:

SAFE ROUTES TO SCHOOL

As society becomes more aware of and concerned with children’s health issues, communities are turning to their schools to provide an environment that promotes both healthy eating and physical activity. School policies supporting healthy eating and physical activity are an important component of school efforts to promote the health and wellbeing of school children. Good nutrition and physical activity help “contribute to improved academic performance, attendance rates, behavior, and lifelong health and well-being.” Policies supporting Safe Routes to School can encourage children to be more physically active by encouraging active transportation to and from school through biking and walking.

What is Safe Routes to School?

Safe Routes to School (SRTS) is a movement focused on increasing the number of children who walk or bike to school. Safe Routes to School initiatives can include both policies and programs that support safe, efficient, and enjoyable opportunities for children to walk or bike to and from school.

Local policies supporting SRTS may include:

- School wellness policies.
- Speed zone limits around schools.
- Local land use planning and zoning requirements that address school siting, crosswalks, and street design.
- Active School Day policies.
- Safe Routes to School plan.

A school’s SRTS programs may include:

- Walking and/or biking maps.
- Consolidated bus pick-up points.
- Remote pick-up and drop-off locations.
- Bike and pedestrian curriculum.
- Walking school bus.
- Safe Routes to School Day.

- Designated team of stakeholders.
- Bicycle parking.
- Hand tallyes to assess usage of various modes of student transportation.
- Hazard or zero-mile busing to transport children past areas unsafe for walking or biking.
Safe Routes to School policies and programs are often designed to remove barriers that may prevent children from walking or biking to and from school, including:

- A lack of safe infrastructure (such as sidewalks, cross-walks, or crossing guards) and other safety issues.
- A lack of programs that promote walking and biking through education and encouragement programs aimed at children, parents, and the community.
- A lack of cooperation between local stakeholders (school districts, cities, counties, or townships).
- A general fear of “liability” for injuries or other unwanted incidents.

Why is Safe Routes to School important?

Safe Routes to School can play a critical role in reversing the nationwide trend of childhood inactivity. In addition, SRTS efforts can help relieve traffic congestion around school zones, improve air quality, reduce accidents, and help improve a community’s quality of life. Safe Routes to School initiatives benefit local neighborhoods by supporting the health and well-being of children, parents, neighbors, plants, animals, and the environment.

Do any federal or Minnesota laws require a Safe Routes to School initiative?

No. However, while neither federal nor Minnesota law require SRTS, both provide support for SRTS initiatives. Federal support for SRTS initiatives includes funding for state departments of transportation to develop SRTS programs. Financial assistance is then awarded to schools by a state department of transportation through a competitive grant program.

A separate Minnesota SRTS program was created to provide additional “assistance in capital investments for safe and appealing non-motorized transportation to and from a school.” Financial assistance from Minnesota’s SRTS Program is intended to supplement or replace aid for infrastructure projects funded through the federal program. This program is in development; it first received funding from the Minnesota bonding bill that was passed in May 2013. The Minnesota Department of Health also supports SRTS by providing funding through its Statewide Health Improvement Program (SHIP) Active Living Strategy. In the first three years of SHIP, 215 schools that serve 143,800 students created SRTS programs.

Does the Minnesota School Boards Association (MSBA) Model Wellness Policy address Safe Routes to School?

No, not specifically.

Could existing MSBA policies be used to support the creation and management of Safe Routes to School?

Yes. The MSBA has several model policies that could be used to support the creation and management of a Safe Routes to School program, such as:

- 707 (Transportation of Public School Students)
- 708 (Transportation of Nonpublic School Students)
- 709 (Student Transportation Safety Policy & Notification Forms)
- 710 (Extracurricular Transportation)
How can Minnesota schools incorporate Safe Routes to School into a school wellness policy?
The following language can be incorporated into a school board policy that follows the MSBA’s model. This language can also be individually tailored to fit into a school board policy that does not follow the MSBA model policy.

Addition to the MSBA School Wellness Policy

533._ SAFE ROUTES TO SCHOOL POLICY

I. PURPOSE

The purpose of this policy is to provide the criteria that students, parents/guardians, and employees need to follow when biking, walking, or using other forms of active transportation to and from school. Biking, walking, and other forms of active transportation promote student and adult well-being by integrating more physical activity into a daily routine and provide active living skills and healthy habits that will last a lifetime.

In supporting active transportation to and from school:

- The district supports biking and walking as transportation as long as students and employees can do so safely.
- Students, parents/guardians, and employees have a responsibility to follow the laws and rules for safe walking, biking, and driving to ensure the safety of all road users - pedestrians, bikers, and motorists.
- The school district assumes no liability for injury or damage resulting from individuals biking or walking to school.

II. GUIDELINES

A. General

1. The school district will facilitate all schools developing a Safe Routes to School (SRTS) plan that incorporates action items from all “5 E’s” (evaluation, engineering, education, encouragement, and enforcement).16

2. The school district will integrate SRTS strategies into district-wide and individual school wellness policies.

3. The school district will assess and, to the extent possible, make any necessary improvements to make it safer and easier for students to walk and bike to and from school. When appropriate, the district will work together with local public works, public safety, and/or police departments in those efforts. The school district will explore the availability of federal and state funds to finance such improvements.

4. The school district will form a school-community planning team that includes students, parent-teacher organizations, local public health representatives, school administrators, law enforcement representatives, city and/or county transportation engineers, city and/or county planners, city and/or county elected officials, fire/EMS representatives, neighborhood association representatives, and parents or other community volunteers.

5. The school district will encourage health and wellness councils at the school district and school level to advance SRTS goals and support successful, ongoing implementation.

6. The school district will encourage walking and biking to and from school based on age-appropriate standards for students living within certain distances of the school.

7. The school district will provide parents with information on the health benefits of walking and biking to and from school.
8. The school district will work with the appropriate local government authorities to ensure that sidewalks and/or bike paths exist to provide connectivity among neighborhoods and to allow safe access to recreation centers, libraries, and other after-school destinations.

9. The school district assumes no responsibility to ensure that students are trained in pedestrian or bike safety. Parents and guardians are expected to teach students the traffic safety laws and school district rules outlined in this policy.

B. Biking

1. The school district supports students, parents/guardians, and employees using biking as transportation as long as the bikers live within a comfortable biking distance for their level of skill, follow traffic safety laws, and use appropriate safety equipment, including a properly fitted helmet.

2. Children in 3rd grade and below are unlikely to have the developmental and judgment skills for unsupervised biking. These children should be accompanied by an adult when biking to or from school.

3. While on school grounds with a bike, students must comply with traffic safety laws and the following rules:
 a. Bikers must exercise caution around motor vehicles and pedestrian students. Bikers must walk bikes on school sidewalks when others are present.
 b. Bikes must be parked in the racks provided.
 c. Students are encouraged to bring and use bike locks.
 d. Helmets must be stored in a locker or backpack, or locked to a bike.
 e. Students must respect the personal property of others and not interfere with other bikes. This includes stealing bikes or equipment, unlocking quick releases, touching helmets locked to bikes, or any other action that would damage property.

C. Walking

1. The school district supports students, parents/guardians, and employees walking to and from school, as long as the individuals live within a comfortable walking distance.

2. The school district recommends that students in 3rd grade and below walk with adult supervision.

3. Walkers must obey traffic safety laws and always use their common sense and good judgment.
 a. If available, students, parents/guardians, and employees should use cross walks where painted.
 b. Before crossing, look left, right, and left again to make sure the road is clear. Continue looking while you cross and listen for traffic.
 c. Walkers should not cross the street from between parked cars.

What other ways can schools support Safe Routes to School initiatives?

In Minnesota, the superintendent is responsible for implementing and enforcing school board policy. Superintendents issue protocols, procedures, and guidelines to help implement the school board’s policies. The following language can be incorporated into existing guidelines. However, as school boards and superintendents may adopt more specific or general guidelines based on their needs and goals, policy language can be interchangeable with the guidelines listed below.
Safe Routes to School Guidelines

- Students, faculty, and staff are encouraged and supported to safely walk or bike to and from school as often as possible. 17
- Elementary schools will provide crossing guards near the school. 18
- Schools will work with the community, including school board members, parents, and local public works, community planning, and public safety agencies, to create ways for students to walk, bike, rollerblade, or skateboard safely to and from school. 19
- All schools will provide biking and walking safety education to students, parents, and faculty. 20
- Basic biking and walking safety will be taught when bus safety is taught.
- The school district will participate in national activity campaigns, like Kids Walk to School, Screen-Free Week, Bike to School Day, and International Walk to School Day.
- All schools will provide bike racks on the school campus. 21 Bikes must be locked to school-provided racks when left unattended. 22
- The school district will develop a walking school bus and remote drop-off program at the elementary level.
- All schools will provide maps showing safe routes for students to walk and bike to and from school. 23
- Elementary school students living less than ___ mile(s) away from the closest school in their district, and middle and high school students living less than ___ mile(s) from the closest school in their district, will be encouraged to walk or bike to and from school. 24
- Transportation or an adult escort will be provided to students whose route to school has been surveyed and determined not to be reasonably safe for walking or biking. 25
- All persons on school grounds riding a bike, other pedal-powered vehicle, scooter, or any other device associated with a significant risk of causing a head injury will wear a safety helmet that meets the standards of the federal Consumer Product Safety Commission. 26
- Health education and physical education curricula will include topics of pedestrian and biker safety and traffic rules at appropriate grade levels. 27
- Schools will conduct hand tallies to measure the number of students biking, walking, and arriving in motor vehicle transit for assessment purposes.

Are there any other resources that may be helpful in implementing Safe Routes to School?

Yes. Several resources are available that can assist with implementing an SRTS program. These include:

- Public Health Law Center
 - Liability Concerns in Minnesota: Recreational Maps, http://publichealthlawcenter.org/sites/default/files/resources/ship-fs-communitymappingliability-2010_0.pdf
- Minnesota Department of Transportation, Safe Routes to School Program,
 http://www.dot.state.mn.us/saferoutes/
- Minnesota Department of Health, Safe Routes to School Program,
 http://www.health.state.mn.us/divs/oshii/srts/
- National Center for Safe Routes to School
- Centers for Disease Control and Prevention, Walk-to-School Programs,
 http://www.cdc.gov/nccdphp/dnpa/kidwalk/pdf/kidwalk_programs_3_31_06.pdf
- Michigan Department of Transportation, Effectively Planning and Implementing Safe Routes to School for Students with Disabilities,
 http://saferoutesmichigan.org/userfiles/file/Resources/papers_and_presentations/st2s_papers/EX_SUMMARY_SRTS_for_Students_with_Disabilities_FINAL.pdf

Endnotes

3 See, e.g., Safe Routes to School Program, MINN. DEPT’OF TRANS., http://www.dot.state.mn.us/saferoutes/index.html (last visited
 Apr. 29, 2013) [hereinafter MNDOT SRTS Program].
4 See Nike, Inc. et al., Designed to Move: A Physical Activity Action Agenda, 78-79 (2012), available at
5 What is Safe Routes to School?, SAFE ROUTES TO SCHOOL NAT’L. PARTNERSHIP,
 http://www.saferoutespartnership.org/about/history/what-is-safe-routes-to-school (last visited Apr. 29, 2013). See also David Bassett
et al., Estimated Energy Expenditures for School-Based Policies and Active Living, 44 AM. J. PREV. MED. 108, 112 (2013) (reviewing scientific literature to conclude that walking or biking to school has "the potential to meaningfully increase children’s physical activity").

9 Safe Routes to School Programs: Safe Routes to School Funding and Special Requirements, MINN. DEPT. OF TRANS. (last modified 2012), http://www.dot.state.mn.us/saferoutes/funding.html.

14 LEAGUE OF MINNESOTA CITIES, HANDBOOK FOR MINNESOTA CITIES 17-14 (2012), available at http://www.lcm.org/media/document/1/chapter17.pdf ("The Minnesota School Boards Association (MSBA) supports, promotes and enhances the work of public school boards. MSBA is a private nonprofit organization that provides technical assistance; cost-saving programs; and advocacy, training, research, and referral services for all of Minnesota’s public [school members]; Membership in MSBA is voluntary.").

19 See S.C. Recommendations, supra note 18, at 21.

20 Id. at 20.

21 Fit, Healthy, and Ready to Learn, supra note 17, at 39.

22 Id.

23 Id.

24 Id.

25 Id.

26 Id.

27 Id.

A text readable version of this document can be found at:
EDUCATION

BEGINNER

Safety Education

Our school requires a comprehensive education curriculum with a focus on traffic safety education and active transportation skills. The curriculum shall include:

- Implementing the Minnesota Walk! Bike! Fun! Pedestrian and Bicycle Curriculum for all students age 5-13
- Conducting pedestrian safety workshops for all students in grades K-2nd
- Hosting bicycle skills and safety workshops for all students in 5th grade
- Holding ‘How to use public transit’ classes in 6th grade
- Promoting safe-driving skills to 10th graders, with an emphasis on avoiding injuries to pedestrian and bicyclists

INTERMEDIATE

Safety Education

In addition to the policy above, our school shall host a traffic safety education and active transportation skills workshop with the Bicycle Alliance of Minnesota at the beginning of each school year to train and educate teachers and school personnel on using the Minnesota Walk! Bike! Fun! Pedestrian and Bicycle Curriculum.

LOCAL EDUCATION SUCCESS: The Arrowhead Regional Development Commission (ARDC) implemented the Helmet Hero program in 2007. 3rd grade students throughout northeast Minnesota receive 30-45 minutes of in-class instruction on bicycle safety, as well as receive a helmet at no charge. Rewards are then given to students seen using their helmets.
BEGINNER

Establishing a School Team

Our school shall establish a Safe Routes to School Task Force to develop and implement strategies grounded in the "Five E's" that address Safe Routes to School planning, funding, and policies. Specifically, the Task Force shall:

- Evaluate current SRTS policies to determine 1) whether they are being fully implemented, 2) how to improve implementation, and 3) what is needed to improve the policies' success
- Ensure that Safe Routes to School resources are distributed equitably in the school
- Identify and pursue funding opportunities.

In the first year of its formation, the Task Force shall meet every two months. Thereafter, it shall meet quarterly.

Data Collection

The Task Force shall coordinate annual SRTS data collection. This collection process may include:

- SRTS Student Travel Mode Tallies
- SRTS Parent Surveys on Transportation Preferences and Concerns
- Walk Audits and Maps of Active Transportation Routes
- Plotting student addresses with assistance from local GIS departments
ENCOURAGEMENT

<table>
<thead>
<tr>
<th>BEGINNER</th>
<th>INTERMEDIATE</th>
<th>ADVANCED</th>
</tr>
</thead>
</table>
| **Minimize Driving**
Because automobile collisions are a leading cause of death among school-aged children, we support efforts to reduce traffic safety by minimizing driving to and from school. Decreasing the number of automobile trips, whether by engaging active transportation, taking public transportation, or carpooling, will reduce automobile congestion and create a safer environment for active transportation. | **Walking School Bus and Bike Trains**
Our school will establish and promote regular Walking School Bus or Bicycle Train programs. Such programs shall occur on a regular basis, at least once per week. | **Busing**
Our school acknowledges that busing may play a significant role in supporting student learning and meeting educational and equity objectives. However, we also support integrating active transportation into our existing busing policies. Options may include: |
| **Safe Routes to School Events**
We shall promote at least two active transportation events per school year. Events will promote active, healthy lifestyles for the community and may include Walk to School Days, Bike to School Days, and School Walk-a-Thons. | **Arrival and Dismissal**
Our school recognizes that promoting student safety is especially critical during arrival and dismissal times due to 1) increased automobile and bus traffic volume, and 2) the potential for conflicts between different modes of transportation. Accordingly, our school will separate active transportation from the other forms of transportation, to the extent possible. To achieve this end, one or more of the following strategies must be adopted:
- Remote drop-off locations
- Car-free zones
- Carpool lanes for drop-offs and pick-ups
- Early dismissal for active transporters | - Voluntary or mandatory remote drop-offs for buses
- Safe Routes to Bus Stops programs
- Training for bus drivers on how to drive safely on routes frequented by users of active transportation (e.g., biking, walking) |

LOCAL ENCOURAGEMENT SUCCESS: Minneapolis Public Schools are encouraged to implement **Bus Stop & Walk programs.** With Bus Stop & Walk, school buses unload away from the school campus and walk along a designated route to school together to complete their trip. Learn about **Loring Community School's** Bus Stop & Walk program here.

MN SRTS MODEL POLICIES | PHONE: 651-366-4180 | www.mnsaferroutestoschool.org
ENFORCEMENT

Law Enforcement Partnership

On an annual basis, our school provide our SRTS Plan and policies to our local public safety and police departments. Our school shall partner with these agencies to ensure that they 1) understand the details of this policy, 2) provide rigorous traffic safety enforcement in the vicinity of schools, and 3) understand the rights and responsibilities of those engaging in active transportation.

Crossing Guards

Our school, in partnership with the administrator of the crossing guard program, shall work together to implement an effective process for hiring, funding, training, locating, supervising, and properly equipping crossing guards. If the number of crossing guards at our school is insufficient, we shall, in partnership with the crossing guard agency, seek additional funding or resources to increase the number of crossing guards.

No Idling

Our school acknowledges that motor vehicles idling on or near campus increase air pollution, negatively affecting the health of everyone in the vicinity of the school. Accordingly, our school prohibits all motor vehicles from idling on campus. "No Idling" signs shall be posted on campus to alert drivers of this policy. In extreme weather, bus drivers will be allowed to wait in a temperature-controlled room until students are dismissed.

LOCAL ENFORCEMENT SUCCESS: The Minneapolis City Council adopted an Anti-Idling Vehicle Ordinance for the city in June 2008. The ordinance is enforced with educational warning tickets and flyers disseminated to families through the local schools. The local Metro Transit agency stated that the new ordinance will save the public transit buses nearly 66,000 gallons of gasoline each year.

LOCAL ENFORCEMENT SUCCESS: In 2008, The Duluth-Superior Metropolitan Interstate Council (MIC) worked with the Duluth Police Department to conduct a training session for Duluth school staff on how to properly issue parking tickets to motor vehicles parked illegally in bus zones.

MN SRTS MODEL POLICIES | PHONE: 651-366-4180 | www.mnsafesroutestoschool.org
LOCAL ENGINEERING SUCCESS:
In 2009, the Arrowhead Regional Development Commission (ARDC) worked with the Fond du Lac Reservation and the Ojibwe School to develop a SRTS Travel Plan. In 2010, The Fond du Lac Reservation incorporated the Travel Plan into their comprehensive plan, and secured funding for a multi-use path in 2013. According to Jason Holland, the Director of Planning at ARDC, the SRTS planning process was an important factor in being awarded the Transportation Enhancement (TE) funds to implement the trail project.

LOCAL ENGINEERING SUCCESS:
In 2012, the City of Brooklyn Center received a grant to create a SRTS Plan. The Plan established prioritized routes and engineering recommendations. The City of Brooklyn Center incorporated some of the upgrades and improvements into plans for reconstruction projects. The City’s Public Works Director and City Engineer, Steve Lillehaug, has since successfully used the Plan to receive Transportation Alternatives Program (TAP) funding from the Metropolitan Council.

Resources:
- http://safesolutions.org/safe-routes/welcome
- http://saferoutesinfo.org/program-tools/find-state-contacts/minnesota